Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denise Drazul-Schrader is active.

Publication


Featured researches published by Denise Drazul-Schrader.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

The Ability to Promote Efflux Via ABCA1 Determines the Capacity of Serum Specimens With Similar High-Density Lipoprotein Cholesterol to Remove Cholesterol From Macrophages

Margarita de la Llera-Moya; Denise Drazul-Schrader; Bela F. Asztalos; Marina Cuchel; Daniel J. Rader; George H. Rothblat

Objective—We measured efflux from macrophages to apolipoprotein B-depleted serum from 263 specimens and found instances in which serum having similar high-density lipoprotein cholesterol (HDL-C) differed in their efflux capacity. Thus, we wanted to elucidate why efflux capacity could be independent of total HDL-C or apolipoprotein A-I (apoA-I). Methods and Results—To understand why sera with similar HDL-C or apoA-I could differ in total efflux capacity, we assessed their ability to promote efflux via the pathways expressed in cAMP-treated J774 macrophages. Briefly, macrophages were preincubated with probucol to block ABCA1, with BLT-1 to block SR-BI, and with both inhibitors to measure residual efflux. ABCG1 efflux was measured with transfected BHK-1 cells. We used apolipoprotein B-depleted serum from specimens with similar HDL-C values at the 25th and 75th percentiles. Specimens in each group were classified as having high or low efflux based on total efflux being above or below the group average. We found that independently of HDL-C, sera with higher efflux capacity had a significant increase in ABCA1-mediated efflux, which was significantly correlated to the concentration of pre&bgr;-1 HDL. The same result was obtained when these sera were similarly analyzed based on similar apoA-I. Conclusion—Sera with similar HDL-C or apoA-I differ in their ability to promote macrophage efflux because of differences in the concentration of pre&bgr;-1 HDL.


Journal of Lipid Research | 2013

SERUM ALBUMIN ACTS AS A SHUTTLE TO ENHANCE CHOLESTEROL EFFLUX FROM CELLS

Sandhya Sankaranarayanan; Margarita de la Llera-Moya; Denise Drazul-Schrader; Michael C. Phillips; Ginny Kellner-Weibel; George H. Rothblat

An important mechanism contributing to cell cholesterol efflux is aqueous transfer in which cholesterol diffuses from cells into the aqueous phase and becomes incorporated into an acceptor particle. Some compounds can enhance diffusion by acting as shuttles transferring cholesterol to cholesterol acceptors, which act as cholesterol sinks. We have examined whether particles in serum can enhance cholesterol efflux by acting as shuttles. This task was accomplished by incubating radiolabeled J774 cells with increasing concentrations of lipoprotein-depleted sera (LPDS) or components present in serum as shuttles and a constant amount of LDL, small unilamellar vesicles, or red blood cells (RBC) as sinks. Synergistic efflux was measured as the difference in fractional efflux in excess of that predicted by the addition of the individual efflux values of sink and shuttle alone. Synergistic efflux was obtained when LPDS was incubated with cells and LDL. When different components of LPDS were used as shuttles, albumin produced synergistic efflux, while apoA-I did not. A synergistic effect was also obtained when RBC was used as the sink and albumin as shuttle. The previously observed negative association of albumin with coronary artery disease might be linked to reduced cholesterol shuttling that would occur when serum albumin levels are low.


Atherosclerosis | 2016

L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing CETP

Heidi L. Collins; Denise Drazul-Schrader; Anthony C. Sulpizio; Paul D. Koster; Yuping Williamson; Steven J. Adelman; Kevin Q. Owen; Toran Sanli; Aouatef Bellamine

OBJECTIVE Dietary l-carnitine can be metabolized by intestinal microbiota to trimethylamine, which is absorbed by the gut and further oxidized to trimethylamine N-oxide (TMAO) in the liver. TMAO plasma levels have been associated with atherosclerosis development in ApoE(-/-) mice. To better understand the mechanisms behind this association, we conducted in vitro and in vivo studies looking at the effect of TMAO on different steps of atherosclerotic disease progression. METHODS J774 mouse macrophage cells were used to evaluate the effect of TMAO on foam cell formation. Male ApoE(-/-) mice transfected with human cholesteryl ester transfer protein (hCETP) were fed l-carnitine and/or methimazole, a flavin monooxygenase 3 (FMO3) inhibitor that prevents the formation of TMAO. Following 12 week treatment, l-carnitine and TMAO plasma levels, aortic lesion development, and lipid profiles were determined. RESULTS TMAO at concentrations up to 10-fold the Cmax reported in humans did not affect in vitro foam cell formation. In ApoE(-/-)mice expressing hCETP, high doses of l-carnitine resulted in a significant increase in plasma TMAO levels. Surprisingly, and independently from treatment group, TMAO levels inversely correlated with aortic lesion size in both aortic root and thoracic aorta. High TMAO levels were found to significantly correlate with smaller aortic lesion area. Plasma lipid and lipoprotein levels did not change with treatment nor with TMAO levels, suggesting that the observed effects on lesion area were independent from lipid changes. CONCLUSION These findings suggest that TMAO slows aortic lesion formation in this mouse model and may have a protective effect against atherosclerosis development in humans.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Importance of Evaluating Cell Cholesterol Influx With Efflux in Determining the Impact of Human Serum on Cholesterol Metabolism and Atherosclerosis

Ginny L. Weibel; Denise Drazul-Schrader; Debra Shivers; Alisha Wade; George H. Rothblat; Muredach P. Reilly; Margarita de la Llera-Moya

Objective— Cholesterol efflux relates to cardiovascular disease but cannot predict cellular cholesterol mass changes. We asked whether influx and net flux assays provide additional insights. Approach and Results— Adapt a bidirectional flux assay to cells where efflux has clinical correlates and examine the association of influx, efflux, and net flux to serum triglycerides (TGs). Apolipoprotein B–depleted (high-density lipoprotein-fraction) serum from individuals with unfavorable lipids (median [interquartile range]; high-density lipoprotein-cholesterol=39 [32–42], low-density lipoprotein-cholesterol=109 [97–137], TGs=258 [184–335] mg/dL; n=13) promoted greater ATP-binding cassette transporter A1–mediated [1,2-3H] cholesterol efflux (3.8±0.3%/4 hour versus 1.2±0.4%/4 hour; P<0.0001) from cyclic 3’,5’-amp(CTP-amp)-treated J774 macrophages than from individuals with favorable lipids (high-density lipoprotein-cholesterol=72 [58–88], low-density lipoprotein-cholesterol=111 [97–131], TGs=65 [56–69] mg/dL; n=10). Thus, high TGs associated with more ATP-binding cassette transporter A1 acceptors. Efflux of cholesterol mass (&mgr;g free cholesterol/mg cell protein per 8 hour) to serum was also higher (7.06±0.33 versus 5.83±0.48; P=0.04). However, whole sera from individuals with unfavorable lipids promoted more influx (5.14±0.65 versus 2.48±0.85; P=0.02) and lower net release of cholesterol mass (1.93±0.46 versus 3.36±0.47; P=0.04). The pattern differed when mass flux was measured using apolipoprotein B–depleted serum rather than serum. Although individuals with favorable lipids tended to have greater influx than those with unfavorable lipids, efflux to apolipoprotein B–depleted serum was markedly higher (6.81±0.04 versus 2.62±0.14; P<0.0001), resulting in an efflux:influx ratio of ≈3-fold. Thus both serum and apolipoprotein B–depleted serum from individuals with favorable lipids promoted greater net cholesterol mass release despite increased ATP-binding cassette transporter A1–mediated efflux in samples of individuals with high TGs/unfavorable lipids. Conclusions— When considering the efficiency of serum specimens to modulate cell cholesterol content, both influx and efflux need to be measured.


Journal of Lipid Research | 2010

Importance of macrophage cholesterol content on the flux of cholesterol mass

Sandhya Sankaranarayanan; Margarita de la Llera-Moya; Denise Drazul-Schrader; Bela F. Asztalos; Ginny L. Weibel; George H. Rothblat

Net flux of cholesterol represents the difference between efflux and influx and can result in net cell-cholesterol accumulation, net cell-cholesterol depletion, or no change in cellular cholesterol content. We measured radiolabeled cell-cholesterol efflux and cell-cholesterol mass using cholesterol-normal and -enriched J774 and elicited mouse peritoneal macrophage cells. Net cell-cholesterol effluxes were observed when cholesterol-enriched J774 cells were incubated with 3.5% apolipoprotein (apo) B depleted human serum, HDL3, and apo A-I. Net cell-cholesterol influxes were observed when cholesterol-normal J774 cells were incubated with the same acceptors except apo A-I. When incubated with 2.5% individual sera, cholesterol mass efflux in free cholesterol (FC)-enriched J774 cells correlated with the HDL-cholesterol (HDL-C) concentrations (r2 = 0.4; P=0.003), whereas cholesterol mass influx in cholesterol-normal J774 cells correlated with the LDL cholesterol (LDL-C) concentrations (r2 = 0.6; P<0.0001) of the individual sera. A positive correlation was observed between measurements of [3H]cholesterol efflux and reductions in cholesterol mass (r2 = 0.4; P=0.001) in FC-enriched J774 cells. In conclusion, isotopic efflux measurements from cholesterol-normal or cholesterol-enriched cells provide an accurate measurement of relative ability of an acceptor to remove labeled cholesterol under a specific set of experimental conditions, i.e., efflux potential. Moreover, isotopic efflux measurements can reflect changes in cellular cholesterol mass if the donor cells are enriched with cholesterol.


Journal of Lipids | 2014

Incubation of MDCO-216 (ApoA-IMilano/POPC) with Human Serum Potentiates ABCA1-Mediated Cholesterol Efflux Capacity, Generates New Prebeta-1 HDL, and Causes an Increase in HDL Size

H.J.M. Kempen; Dorota B. Schranz; Bela F. Asztalos; James D. Otvos; Elias J. Jeyarajah; Denise Drazul-Schrader; Heidi L. Collins; Steven J. Adelman; Peter Wijngaard

MDCO-216 is a complex of dimeric ApoA-IMilano and palmitoyl oleoyl phosphatidylcholine (POPC), previously shown to reduce atherosclerotic plaque burden. Here we studied the effect of incubation of human plasma or serum with MDCO-216 on cholesterol efflux capacity from J774 cells, on prebeta-1 high density lipoprotein (prebeta-1 HDL) and on HDL size assessed by proton nuclear magnetic resonance (1H-NMR). MDCO-216 incubated in buffer containing 4% human serum albumin stimulated both ABCA1-mediated efflux and ABCA1-independent cholesterol efflux from J774 macrophages. When incubated with human serum a dose- and time-dependent synergistic increase of the ABCA1-mediated efflux capacity were observed. Using a commercially available ELISA for prebeta-1 HDL, MDCO-216 as such was poorly detected (12–15% of nominal amount of protein). Prebeta-1 HDL was rapidly lost when human plasma alone is incubated at 37°C. In contrast, incubation of human plasma with MDCO-216 at 37°C produced a large amount of new prebeta-1 HDL. Native 2D electrophoresis followed by immunoblotting with an apoA-I antibody, which also detects ApoA-I Milano, confirmed the increase in prebeta-1 HDL upon incubation at 37°C. With the increase of prebeta-1 HDL, the concomitant disappearance of the small alpha-3 and alpha-4 HDL and MDCO-216 and an increase in the large alpha-1 and alpha-2 HDL were observed. Immunoblotting with Mab 17F3 specific for ApoA-I Milano showed the appearance of ApoA-I Milano in alpha-1 and alpha-2, but not in prebeta-1 HDL. 1H-NMR analysis of plasma incubated with MDCO-216 confirmed rapid disappearance of small-sized HDL particles and increase of medium- and large-sized HDL particles accompanied with a decrease in total HDL particle number. In conclusion, incubation of human plasma or serum with MDCO-216 strongly enhanced ABCA1-mediated cholesterol efflux, caused a strong increase of prebeta-1 HDL, and drastically changed the distribution of HDL subpopulations. Overall, the results are in line with the hypothesis that MDCO-216 fuses with small alpha-migrating HDL particles forming larger particles containing both apoA-I WT and ApoA-I Milano, meanwhile liberating the endogenous wild-type apoA-I which enriches prebeta-1 HDL subpopulation.


PLOS ONE | 2012

The effects of apolipoprotein F deficiency on high density lipoprotein cholesterol metabolism in mice.

William R. Lagor; David W. Fields; Sumeet A. Khetarpal; Arthi Kumaravel; Wen Lin; Nathaniel Weintraub; Kaijin Wu; Sarah F. Hamm-Alvarez; Denise Drazul-Schrader; Margarita de la Llera-Moya; George H. Rothblat; Daniel J. Rader

Apolipoprotein F (apoF) is 29 kilodalton secreted sialoglycoprotein that resides on the HDL and LDL fractions of human plasma. Human ApoF is also known as Lipid Transfer Inhibitor protein (LTIP) based on its ability to inhibit cholesteryl ester transfer protein (CETP)-mediated transfer events between lipoproteins. In contrast to other apolipoproteins, ApoF is predicted to lack strong amphipathic alpha helices and its true physiological function remains unknown. We previously showed that overexpression of Apolipoprotein F in mice reduced HDL cholesterol levels by 20–25% by accelerating clearance from the circulation. In order to investigate the effect of physiological levels of ApoF expression on HDL cholesterol metabolism, we generated ApoF deficient mice. Unexpectedly, deletion of ApoF had no substantial impact on plasma lipid concentrations, HDL size, lipid or protein composition. Sex-specific differences were observed in hepatic cholesterol content as well as serum cholesterol efflux capacity. Female ApoF KO mice had increased liver cholesteryl ester content relative to wild type controls on a chow diet (KO: 3.4+/−0.9 mg/dl vs. WT: 1.2+/−0.3 mg/dl, p<0.05). No differences were observed in ABCG1-mediated cholesterol efflux capacity in either sex. Interestingly, ApoB-depleted serum from male KO mice was less effective at promoting ABCA1-mediated cholesterol efflux from J774 macrophages relative to WT controls.


Journal of Lipid Research | 2007

Effects of amino acid substitutions at glycine 420 on SR-BI cholesterol transport function.

Saj Parathath; Yolanda F. Darlington; Margarita de la Llera Moya; Denise Drazul-Schrader; David L. Williams; Michael C. Phillips; George H. Rothblat; Margery A. Connelly

Scavenger receptor class B type I (SR-BI) facilitates the uptake of HDL cholesteryl esters (CEs) in a two-step process involving binding of HDL to its extracellular domain and transfer of HDL core CEs to a metabolically active membrane pool, where they are subsequently hydrolyzed by a neutral CE hydrolase. Recently, we characterized a mutant, G420H, which replaced glycine 420 in the extracellular domain of SR-BI with a histidine residue and had a profound effect on SR-BI function. The G420H mutant receptor exhibited a reduced ability to mediate selective HDL CE uptake and was unable to deliver HDL CE for hydrolysis, despite the fact that it retained the ability to bind HDL. This did not hold true if glycine 420 was replaced with an alanine residue; G420A maintained wild-type HDL binding and cholesterol transport activity. To further understand the role that glycine 420 plays in SR-BI function and why there was a disparity between replacing glycine 420 with a histidine versus an alanine, we generated a battery of point mutants by substituting glycine 420 with amino acids possessing side chains that were charged, hydrophobic, polar, or bulky and tested the resulting mutants for their ability to support HDL binding, HDL cholesterol transport, and delivery for hydrolysis. The results indicated that substitution with a negatively charged residue or a proline impaired cell surface expression of SR-BI or its interaction with HDL, respectively. Furthermore, substitution of glycine 420 with a positively charged residue reduced HDL CE uptake as well as its subsequent hydrolysis.


Journal of Biological Chemistry | 2003

Separation of Lipid Transport Functions by Mutations in the Extracellular Domain of Scavenger Receptor Class B, Type I

Margery A. Connelly; Margarita de la Llera-Moya; Yinan Peng; Denise Drazul-Schrader; George H. Rothblat; David L. Williams


The FASEB Journal | 2016

L-carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing hCETP

Aouatef Bellamine; Heidi L. Collins; Denise Drazul-Schrader; Anthony C. Sulpizio; Paul D. Koster; Yuping Williamson; Steven J. Adelman; Kevin Q. Owen; Toran Sanli

Collaboration


Dive into the Denise Drazul-Schrader's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margarita de la Llera-Moya

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heidi L. Collins

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elias J. Jeyarajah

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James D. Otvos

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge