Denise K. Marciano
University of Texas Southwestern Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denise K. Marciano.
Development | 2011
Denise K. Marciano; Paul Brakeman; Chao Zong Lee; Natalie Spivak; Dennis J. Eastburn; David M. Bryant; Gerard M.J. Beaudoin; Ilse Hofmann; Keith E. Mostov; Louis F. Reichardt
Defects in the development or maintenance of tubule diameter correlate with polycystic kidney disease. Here, we report that absence of the cadherin regulator p120 catenin (p120ctn) from the renal mesenchyme prior to tubule formation leads to decreased cadherin levels with abnormal morphologies of early tubule structures and developing glomeruli. In addition, mutant mice develop cystic kidney disease, with markedly increased tubule diameter and cellular proliferation, and detached luminal cells only in proximal tubules. The p120ctn homolog Arvcf is specifically absent from embryonic proximal tubules, consistent with the specificity of the proximal tubular phenotype. p120ctn knockdown in renal epithelial cells in 3D culture results in a similar cystic phenotype with reduced levels of E-cadherin and active RhoA. We find that E-cadherin knockdown, but not RhoA inhibition, phenocopies p120ctn knockdown. Taken together, our data show that p120ctn is required for early tubule and glomerular morphogenesis, as well as control of luminal diameter, probably through regulation of cadherins.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Denise K. Marciano; Marjorie Russel; Sanford M. Simon
Filamentous phage f1 is exported from its Escherichia coli host without killing the bacterial cell. Phage-encoded protein pIV, which is required for phage assembly and secretion, forms large highly conductive channels in the outer membrane of E. coli. It has been proposed that the phage are extruded across the bacterial outer membrane through pIV channels. To test this prediction, we developed an in vivo assay by using a mutant pIV that functions in phage export but whose channel opens in the absence of phage extrusion. In E. coli lacking its native maltooligosacharride transporter LamB, this pIV variant allowed oligosaccharide transport across the outer membrane. This entry of oligosaccharide was decreased by phage production and still further decreased by production of phage that cannot be released from the cell surface. Thus, exiting phage block the pIV-dependent entry of oligosaccharide, suggesting that phage occupy the lumen of pIV channels. This study provides the first evidence, to our knowledge, for viral exit through a large aqueous channel.
Development | 2013
Zhufeng Yang; Susan E. Zimmerman; Paul Brakeman; Gerard M.J. Beaudoin; Louis F. Reichardt; Denise K. Marciano
A fundamental process in biology is the de novo formation and morphogenesis of polarized tubules. Although these processes are essential for the formation of multiple metazoan organ systems, little is known about the molecular mechanisms that regulate them. In this study, we have characterized several steps in tubule formation and morphogenesis using the mouse kidney as a model system. We report that kidney mesenchymal cells contain discrete Par3-expressing membrane microdomains that become restricted to an apical domain, coinciding with lumen formation. Once lumen formation has been initiated, elongation occurs by simultaneous extension and additional de novo lumen generation. We demonstrate that lumen formation and elongation require afadin, a nectin adaptor protein implicated in adherens junction formation. Mice that lack afadin in nephron precursors show evidence of Par3-expressing membrane microdomains, but fail to develop normal apical-basal polarity and generate a continuous lumen. Absence of afadin led to delayed and diminished integration of nectin complexes and failure to recruit R-cadherin. Furthermore, we demonstrate that afadin is required for Par complex formation. Together, these results suggest that afadin acts upstream of the Par complex to regulate the integration and/or coalescence of membrane microdomains, thereby establishing apical-basal polarity and lumen formation/elongation during kidney tubulogenesis.
Cell Reports | 2016
Vidhya R. Nair; Luis H. Franco; Vineetha M. Zacharia; Haaris S. Khan; Chelsea E. Stamm; Wu You; Denise K. Marciano; Hideo Yagita; Beth Levine; Michael U. Shiloh
The prevailing paradigm is that tuberculosis infection is initiated when patrolling alveolar macrophages and dendritic cells within the terminal alveolus ingest inhaled Mycobacterium tuberculosis (Mtb). However, definitive data for this model are lacking. Among the epithelial cells of the upper airway, a specialized epithelial cell known as a microfold cell (M cell) overlies various components of mucosa-associated lymphatic tissue. Here, using multiple mouse models, we show that Mtb invades via M cells to initiate infection. Intranasal Mtb infection in mice lacking M cells either genetically or by antibody depletion resulted in reduced invasion and dissemination to draining lymph nodes. M cell-depleted mice infected via aerosol also had delayed dissemination to lymph nodes and reduced mortality. Translocation of Mtb across two M cell transwell models was rapid and transcellular. Thus, M cell translocation is a vital entry mechanism that contributes to the pathogenesis of Mtb.
Mbio | 2013
Vineetha M. Zacharia; Paolo Manzanillo; Vidhya R. Nair; Denise K. Marciano; Lisa N. Kinch; Nick V. Grishin; Jeffery S. Cox; Michael U. Shiloh
ABSTRACT Tuberculosis, caused by Mycobacterium tuberculosis, remains a devastating human infectious disease, causing two million deaths annually. We previously demonstrated that M. tuberculosis induces an enzyme, heme oxygenase (HO1), that produces carbon monoxide (CO) gas and that M. tuberculosis adapts its transcriptome during CO exposure. We now demonstrate that M. tuberculosis carries a novel resistance gene to combat CO toxicity. We screened an M. tuberculosis transposon library for CO-susceptible mutants and found that disruption of Rv1829 (carbon monoxide resistance, Cor) leads to marked CO sensitivity. Heterologous expression of Cor in Escherichia coli rescued it from CO toxicity. Importantly, the virulence of the cor mutant is attenuated in a mouse model of tuberculosis. Thus, Cor is necessary and sufficient to protect bacteria from host-derived CO. Taken together, this represents the first report of a role for HO1-derived CO in controlling infection of an intracellular pathogen and the first identification of a CO resistance gene in a pathogenic organism. IMPORTANCE Macrophages produce a variety of antimicrobial molecules, including nitric oxide (NO), hydrogen peroxide (H2O2), and acid (H+), that serve to kill engulfed bacteria. In addition to these molecules, human and mouse macrophages also produce carbon monoxide (CO) gas by the heme oxygenase (HO1) enzyme. We observed that, in contrast to other bacteria, mycobacteria are resistant to CO, suggesting that this might be an evolutionary adaptation of mycobacteria for survival within macrophages. We screened a panel of ~2,500 M. tuberculosis mutants to determine which genes are required for survival of M. tuberculosis in the presence of CO. Within this panel, we identified one such gene, cor, that specifically confers CO resistance. Importantly, we found that the ability of M. tuberculosis cells carrying a mutated copy of this gene to cause tuberculosis in a mouse disease model is significantly attenuated. This indicates that CO resistance is essential for mycobacterial survival in vivo. Macrophages produce a variety of antimicrobial molecules, including nitric oxide (NO), hydrogen peroxide (H2O2), and acid (H+), that serve to kill engulfed bacteria. In addition to these molecules, human and mouse macrophages also produce carbon monoxide (CO) gas by the heme oxygenase (HO1) enzyme. We observed that, in contrast to other bacteria, mycobacteria are resistant to CO, suggesting that this might be an evolutionary adaptation of mycobacteria for survival within macrophages. We screened a panel of ~2,500 M. tuberculosis mutants to determine which genes are required for survival of M. tuberculosis in the presence of CO. Within this panel, we identified one such gene, cor, that specifically confers CO resistance. Importantly, we found that the ability of M. tuberculosis cells carrying a mutated copy of this gene to cause tuberculosis in a mouse disease model is significantly attenuated. This indicates that CO resistance is essential for mycobacterial survival in vivo.
Journal of Immunology | 2016
Caitlyn R. Scharn; Angela C. Collins; Vidhya R. Nair; Chelsea E. Stamm; Denise K. Marciano; Edward A. Graviss; Michael U. Shiloh
Mycobacterium tuberculosis, the causative agent of tuberculosis, is responsible for 1.5 million deaths annually. We previously showed that M. tuberculosis infection in mice induces expression of the CO-producing enzyme heme oxygenase (HO1) and that CO is sensed by M. tuberculosis to initiate a dormancy program. Further, mice deficient in HO1 succumb to M. tuberculosis infection more readily than do wild-type mice. Although mouse macrophages control intracellular M. tuberculosis infection through several mechanisms, such as NO synthase, the respiratory burst, acidification, and autophagy, how human macrophages control M. tuberculosis infection remains less well understood. In this article, we show that M. tuberculosis induces and colocalizes with HO1 in both mouse and human tuberculosis lesions in vivo, and that M. tuberculosis induces and colocalizes with HO1 during primary human macrophage infection in vitro. Surprisingly, we find that chemical inhibition of HO1 both reduces inflammatory cytokine production by human macrophages and restricts intracellular growth of mycobacteria. Thus, induction of HO1 by M. tuberculosis infection may be a mycobacterial virulence mechanism to enhance inflammation and bacterial growth.
Journal of The American Society of Nephrology | 2016
Mingzhu Nie; Manjot Bal; Zhufeng Yang; Jie Liu; Carolina Rivera; Andrea Wenzel; Bodo B. Beck; Khashayar Sakhaee; Denise K. Marciano; Matthias Wolf
Hypercalciuria is a major risk factor for nephrolithiasis. We previously reported that Uromodulin (UMOD) protects against nephrolithiasis by upregulating the renal calcium channel TRPV5. This channel is crucial for calcium reabsorption in the distal convoluted tubule (DCT). Recently, mutations in the gene encoding Mucin-1 (MUC1) were found to cause autosomal dominant tubulointerstitial kidney disease, the same disease caused by UMOD mutations. Because of the similarities between UMOD and MUC1 regarding associated disease phenotype, protein structure, and function as a cellular barrier, we examined whether urinary MUC1 also enhances TRPV5 channel activity and protects against nephrolithiasis. We established a semiquantitative assay for detecting MUC1 in human urine and found that, compared with controls (n=12), patients (n=12) with hypercalciuric nephrolithiasis had significantly decreased levels of urinary MUC1. Immunofluorescence showed MUC1 in the thick ascending limb, DCT, and collecting duct. Applying whole-cell patch-clamp recording of HEK cells, we found that wild-type but not disease mutant MUC1 increased TRPV5 activity by impairing dynamin-2- and caveolin-1-mediated endocytosis of TRPV5. Coimmunoprecipitation confirmed a physical interaction between TRPV5 and MUC1. However, MUC1 did not increase the activity of N-glycan-deficient TRPV5. MUC1 is characterized by variable number tandem repeats (VNTRs) that bind the lectin galectin-3; galectin-3 siRNA but not galectin-1 siRNA prevented MUC1-induced upregulation of TRPV5 activity. Additionally, MUC1 lacking VNTRs did not increase TRPV5 activity. Our results suggest that MUC1 forms a lattice with the N-glycan of TRPV5 via galectin-3, which impairs TRPV5 endocytosis and increases urinary calcium reabsorption.
Journal of Cell Science | 2015
Bertha C. Elias; Amrita Das; Diptiben V. Parekh; Glenda Mernaugh; Rebecca L. Adams; Zhufeng Yang; Cord Brakebusch; Ambra Pozzi; Denise K. Marciano; Thomas J. Carroll; Roy Zent
ABSTRACT The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either lineage results in abnormal tubulogenesis, with profound defects in polarity, lumen formation and the actin cytoskeleton. Ultimately, these defects lead to renal failure. Additionally, in vitro analysis of Cdc42-null collecting duct cells shows that Cdc42 controls these processes by regulating the polarity Par complex (Par3–Par6–aPKC–Cdc42) and the cytoskeletal proteins N-Wasp and ezrin. Thus, we conclude that the principal role of Cdc42 in ureteric bud and metanephric mesenchyme development is to regulate epithelial cell polarity and the actin cytoskeleton. Summary: Cdc42 regulates tubulogenesis in the kidney by controlling the polarity Par complex (Par3–Par6–aPKC–Cdc42) and the cytoskeletal proteins N-Wasp and ezrin.
Pediatric Nephrology | 2017
Denise K. Marciano
The formation of polarized epithelial tubules is a hallmark of kidney development. One of the fundamental principles in tubulogenesis is that epithelia coordinate the polarity of individual cells with the surrounding cells and matrix. A central feature in this process is the segregation of membranes into spatially and functionally distinct apical and basolateral domains, and the generation of a luminal space at the apical surface. This review examines our current understanding of the cellular and molecular mechanisms that underlie the establishment of apical–basal polarity and lumen formation in developing renal epithelia, including the roles of cell–cell and cell–matrix interactions and polarity complexes. We highlight growing evidence from animal models, and correlate these findings with models of tubulogenesis from other organ systems, and from in vitro studies.
Developmental Biology | 2016
Zhufeng Yang; Susan E. Zimmerman; Jun Tsunezumi; Caitlin Braitsch; Cary Trent; David M. Bryant; Ondine Cleaver; Consuelo González-Manchón; Denise K. Marciano
Previous studies have shown CD34 family member Podocalyxin is required for epithelial lumen formation in vitro. We demonstrate that Endoglycan, a CD34 family member with homology to Podocalyxin, is produced prior to lumen formation in developing nephrons. Endoglycan localizes to Rab11-containing vesicles in nephron progenitors, and then relocalizes to the apical surface as progenitors epithelialize. Once an apical/luminal surface is formed, Endoglycan (and the actin-binding protein Ezrin) localize to large, intraluminal structures that may be vesicles/exosomes. We generated mice lacking Endoglycan and found mutants had timely initiation of lumen formation and continuous lumens, similar to controls. Mice with conditional deletion of both Endoglycan and Podocalyxin in developing nephrons also had normal tubular lumens. Despite this, Endoglycan/Podocalyxin is required for apical recruitment of the adaptor protein NHERF1, but not Ezrin, in podocyte precursors, a subset of the epithelia. In summary, while CD34 family members appear dispensable for lumen formation, our data identify Endoglycan as a novel pre-luminal marker and suggest lumen formation occurs via vesicular trafficking of apical cargo that includes Endoglycan.