Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael U. Shiloh is active.

Publication


Featured researches published by Michael U. Shiloh.


Immunity | 1999

Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase

Michael U. Shiloh; John D. MacMicking; Susan C. Nicholson; Juliet E. Brause; Strite Potter; Michael W. Marino; Ferric C. Fang; Mary C. Dinauer; Carl Nathan

The two genetically established antimicrobial mechanisms of macrophages are production of reactive oxygen intermediates by phagocyte oxidase (phox) and reactive nitrogen intermediates by inducible nitric oxide synthase (NOS2). Mice doubly deficient in both enzymes (gp91(phox-/-)/NOS2(-/-)) formed massive abscesses containing commensal organisms, mostly enteric bacteria, even when reared under specific pathogen-free conditions with antibiotics. Neither parental strain showed such infections. Thus, phox and NOS2 appear to compensate for each others deficiency in providing resistance to indigenous bacteria, and no other pathway does so fully. Macrophages from gp91(phox-/-)/NOS2(-/-) mice could not kill virulent Listeria. Their killing of S. typhimurium, E. coli, and attenuated Listeria was markedly diminished but demonstrable, establishing the existence of a mechanism of macrophage antibacterial activity independent of phox and NOS2.


Nature | 2013

The ubiquitin ligase parkin mediates resistance to intracellular pathogens

Paolo Manzanillo; Janelle S. Ayres; Robert O. Watson; Angela C. Collins; Gianne Souza; Chris S. Rae; David S. Schneider; Ken Nakamura; Michael U. Shiloh; Jeffery S. Cox

Ubiquitin-mediated targeting of intracellular bacteria to the autophagy pathway is a key innate defence mechanism against invading microbes, including the important human pathogen Mycobacterium tuberculosis. However, the ubiquitin ligases responsible for catalysing ubiquitin chains that surround intracellular bacteria are poorly understood. The parkin protein is a ubiquitin ligase with a well-established role in mitophagy, and mutations in the parkin gene (PARK2) lead to increased susceptibility to Parkinson’s disease. Surprisingly, genetic polymorphisms in the PARK2 regulatory region are also associated with increased susceptibility to intracellular bacterial pathogens in humans, including Mycobacterium leprae and Salmonella enterica serovar Typhi, but the function of parkin in immunity has remained unexplored. Here we show that parkin has a role in ubiquitin-mediated autophagy of M. tuberculosis. Both parkin-deficient mice and flies are sensitive to various intracellular bacterial infections, indicating parkin has a conserved role in metazoan innate defence. Moreover, our work reveals an unexpected functional link between mitophagy and infectious disease.


Cell Host & Microbe | 2008

Mycobacterium tuberculosis Senses Host-Derived Carbon Monoxide during Macrophage Infection

Michael U. Shiloh; Paolo Manzanillo; Jeffery S. Cox

Mycobacterium tuberculosis (MTB) expresses a set of genes known as the dormancy regulon in vivo. These genes are expressed in vitro in response to nitric oxide (NO) or hypoxia, conditions used to model MTB persistence in latent infection. Although NO, a macrophage product that inhibits respiration, and hypoxia are likely triggers in vivo, additional cues could activate the dormancy regulon during infection. Here, we show that MTB infection stimulates expression of heme oxygenase (HO-1) by macrophages and that the gaseous product of this enzyme, carbon monoxide (CO), activates expression of the dormancy regulon. Deletion of macrophage HO-1 reduced expression of the dormancy regulon. Furthermore, we show that the MTB DosS/DosT/DosR two-component sensory relay system is required for the response to CO. Together, these findings demonstrate that MTB senses CO during macrophage infection. CO may represent a general cue used by pathogens to sense and adapt to the host environment.


Current Opinion in Microbiology | 2000

Reactive nitrogen intermediates and the pathogenesis of Salmonella and Mycobacteria

Michael U. Shiloh; Carl Nathan

Over the past decade, reactive nitrogen intermediates joined reactive oxygen intermediates as a biochemically parallel and functionally non-redundant pathway for mammalian host resistance to many microbial pathogens. The past year has brought a new appreciation that these two pathways are partially redundant, such that each can compensate in part for the absence of the other. In combination, their importance to defense of the murine host is greater than previously appreciated. In addition to direct microbicidal actions, reactive nitrogen intermediates have immunoregulatory effects relevant to the control of infection. Genes have been characterized in Mycobacterium tuberculosis and Salmonella typhimurium that may regulate the ability of pathogens to resist reactive nitrogen and oxygen intermediates produced by activated macrophages.


Cell Host & Microbe | 2015

Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis

Angela C. Collins; Haocheng Cai; Tuo Li; Luis H. Franco; Xiao Dong Li; Vidhya R. Nair; Caitlyn R. Scharn; Chelsea E. Stamm; Beth Levine; Zhijian J. Chen; Michael U. Shiloh

Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection.


The Journal of Allergy and Clinical Immunology | 2013

Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis.

Elizabeth P. Sampaio; Amy P. Hsu; Joseph Pechacek; Hannelore I. Bax; Dalton L. Dias; Michelle L. Paulson; Prabha Chandrasekaran; Lindsey B. Rosen; Daniel Serra de Carvalho; Li Ding; Donald C. Vinh; Sarah K. Browne; Shrimati Datta; Joshua D. Milner; Douglas B. Kuhns; Debra A. Long Priel; Mohammed A. Sadat; Michael U. Shiloh; Brendan De Marco; Michael L. Alvares; Jason W. Gillman; Vivek Ramarathnam; Maria Teresa De La Morena; Liliana Bezrodnik; Ileana Moreira; Gulbu Uzel; Daniel Johnson; Christine Spalding; Christa S. Zerbe; Henry E. Wiley

BACKGROUND Impaired signaling in the IFN-γ/IL-12 pathway causes susceptibility to severe disseminated infections with mycobacteria and dimorphic yeasts. Dominant gain-of-function mutations in signal transducer and activator of transcription 1 (STAT1) have been associated with chronic mucocutaneous candidiasis. OBJECTIVE We sought to identify the molecular defect in patients with disseminated dimorphic yeast infections. METHODS PBMCs, EBV-transformed B cells, and transfected U3A cell lines were studied for IFN-γ/IL-12 pathway function. STAT1 was sequenced in probands and available relatives. Interferon-induced STAT1 phosphorylation, transcriptional responses, protein-protein interactions, target gene activation, and function were investigated. RESULTS We identified 5 patients with disseminated Coccidioides immitis or Histoplasma capsulatum with heterozygous missense mutations in the STAT1 coiled-coil or DNA-binding domains. These are dominant gain-of-function mutations causing enhanced STAT1 phosphorylation, delayed dephosphorylation, enhanced DNA binding and transactivation, and enhanced interaction with protein inhibitor of activated STAT1. The mutations caused enhanced IFN-γ-induced gene expression, but we found impaired responses to IFN-γ restimulation. CONCLUSION Gain-of-function mutations in STAT1 predispose to invasive, severe, disseminated dimorphic yeast infections, likely through aberrant regulation of IFN-γ-mediated inflammation.


Cell Host & Microbe | 2010

Mycobacterium tuberculosis MycP1 Protease Plays a Dual Role in Regulation of ESX-1 Secretion and Virulence

Yamini M. Ohol; David H. Goetz; Kaman Chan; Michael U. Shiloh; Charles S. Craik; Jeffery S. Cox

Mycobacterium tuberculosis uses the ESX-1 secretion system to deliver virulence proteins during infection of host cells. Here we report a mechanism of posttranscriptional control of ESX-1 mediated by MycP1, a M. tuberculosis serine protease. We show that MycP1 is required for ESX-1 secretion but that, unexpectedly, genetic inactivation of MycP1 protease activity increases secretion of ESX-1 substrates. We demonstrate that EspB, an ESX-1 substrate required for secretion, is a target of MycP1 in vitro and in vivo. During macrophage infection, an inactive MycP1 protease mutant causes hyperactivation of ESX-1-stimulated innate signaling pathways. MycP1 is required for growth in mice during acute infection, while loss of its protease activity leads to attenuated virulence during chronic infection. As the key ESX-1 substrates ESAT-6 and CFP-10 are highly immunogenic, fine-tuning of their secretion by MycP1 may balance virulence and immune detection and be essential for successful maintenance of long-term M. tuberculosis infection.


Shock | 1999

Lethality of endotoxin in mice genetically deficient in the respiratory burst oxidase, inducible nitric oxide synthase, or both

Susan C. Nicholson; Stephen R. Grobmyer; Michael U. Shiloh; Juliet E. Brause; Strite Potter; John D. MacMicking; Mary C. Dinauer; Carl Nathan

Two classes of oxidants are thought to play a critical role in tissue damage in septic shock: reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI). Particular importance has been ascribed to peroxynitrite, a product arising from the reaction of nitric oxide with superoxide. A major source of ROI is the respiratory burst oxidase of neutrophils, eosinophils, monocytes, and macrophages. A major source of RNI is inducible nitric oxide synthase (iNOS), an enzyme expressed in leukocytes, hepatocytes, vascular smooth muscle cells, endothelium, and cardiac myocytes during inflammation. In previous studies using various mouse models of endotoxic shock, genetic deficiency of iNOS as a sole intervention did not consistently alter survival. Here, using Salmonella typhimurium endotoxic bacterial lipopolysaccharide (LPS) as a sole challenge, genetic deficiency of iNOS was associated with no protection or a reduction in survival, depending on the dose of LPS. Further, no protection from lethality was observed when LPS was injected into mice genetically deficient in the 91 kDa subunit of the respiratory burst oxidase (gp91phox) nor in mice genetically deficient in both gp91phox and iNOS (gp91phox-/-/NOS2-/- mice). For the latter experiments, mice were challenged either with S. typhimurium LPS alone or with inactivated bacille Calmette-Guerin (BCG) followed by Escherichia coli LPS. Deficiency of gp91phox impaired the inflammatory response to inactivated Propionobacterium acnes, rendering survival studies following priming with P. acnes difficult to interpret. Thus, in two models of endotoxic shock, major reductions in the ability to form nitric oxide or superoxide, alone or in combination, failed to improve survival.


Critical Care Medicine | 2000

Secretory leukocyte protease inhibitor, an inhibitor of neutrophil activation, is elevated in serum in human sepsis and experimental endotoxemia.

Stephen R. Grobmyer; Philip S. Barie; Carl Nathan; Michele Fuortes; Edward Lin; Stephen F. Lowry; Clifford D. Wright; Michael J. Weyant; Lynn J. Hydo; Faith Reeves; Michael U. Shiloh; Aihao Ding

Objectives: To document changes in serum secretory leukocyte protease inhibitor (SLPI) in human sepsis and in experimental endotoxemia in vivo. To compare changes in serum SLPI in human sepsis with changes in interleukin (IL)‐6, IL‐10, and tumor necrosis factor (TNF)‐α. To determine whether or not changes in SLPI correlate with the severity of multiple organ dysfunction syndrome as measured by the maximal multiple organ dysfunction score. Finally, because neutrophils have been implicated in tissue injury associated with organ dysfunction, to determine whether recombinant human SLPI blocks activation of isolated human neutrophils. Design: Case‐control study and ex‐vivo cellular assay. Setting: Surgical intensive care unit and clinical research center of university hospitals; laboratory of a medical school. Interventions: None. Measurements and Main Results: There was a significant dose‐dependent elevation (50.2 ± 4.0 ng/mL, p = .01) in plasma SLPI 12 hrs after administration of lipopolysaccharide to seven healthy adults (36.4 ± 2.3 ng/mL). Further, serum concentrations of SLPI (132 ± 15 ng/mL) were elevated in septic surgical patients compared with healthy controls (43 ± 2 ng/mL, p < .01) and nonseptic surgical controls (69 ± 10 ng/mL, p = .01). Serum SLPI concentrations correlated (r2 = .71, p < .01) better with organ dysfunction as measured by maximal multiple organ dysfunction score than did serum IL‐6 (r2 = .49, p < .01), IL‐10 (r2 = .05, p = .22), or TNF‐α (r2 = .02, p = .44). We found that recombinant human SLPI in vitro inhibits TNF‐α‐induced hydrogen peroxide production by human neutrophils (ID50 = 1‐2 μg/mL). Conclusions: Serum SLPI is elevated in human sepsis and experimental endotoxemia. Maximal concentrations of serum SLPI correlate significantly with maximal multiple organ dysfunction scores in patients with sepsis. Secretory leukocyte protease inhibitor may function to limit ongoing neutrophil‐mediated tissue injury associated with organ dysfunction.


Current Opinion in Microbiology | 2010

To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis

Michael U. Shiloh; Patricia A. DiGiuseppe Champion

Mycobacterium tuberculosis is the causative agent of the global tuberculosis epidemic. To combat this successful human pathogen we need a better understanding of the basic biology of mycobacterial pathogenesis. The use of mycobacterial model systems has the potential to greatly facilitate our understanding of how M. tuberculosis causes disease. Recently, studies using mycobacterial models, including M. bovis BCG, M. marinum, and M. smegmatis have significantly contributed to understanding M. tuberculosis. Specifically, there have been advances in genetic manipulation of M. tuberculosis using inducible promoters and recombineering that alleviate technical limitations in working with mycobacteria. Model systems have helped elucidate how secretion systems function at both the molecular level and during virulence. Mycobacterial models have also led to interesting hypotheses about how M. tuberculosis mediates latent infection and host response. While there is utility in using model systems to understand tuberculosis, each of these models represent distinct mycobacterial species with unique environmental adaptations. Directly comparing findings in model mycobacteria to those in M. tuberculosis will illuminate the similarities and differences between these species and increase our understanding of why M. tuberculosis is such a potent human pathogen.

Collaboration


Dive into the Michael U. Shiloh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vidhya R. Nair

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chelsea E. Stamm

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Angela C. Collins

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Luis H. Franco

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Denise K. Marciano

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffery S. Cox

University of California

View shared research outputs
Top Co-Authors

Avatar

Beth Levine

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vineetha M. Zacharia

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge