Dennis E. Anderson
Beth Israel Deaconess Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dennis E. Anderson.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2013
Dennis E. Anderson; John M. D’Agostino; Alexander G. Bruno; Serkalem Demissie; Douglas P. Kiel; Mary L. Bouxsein
BACKGROUND Fat accumulation in muscle may contribute to age-related declines in muscle function and is indicated by reduced attenuation of x-rays by muscle tissue in computed tomography scans. Reduced trunk muscle attenuation is associated with poor physical function, low back pain, and increased hyperkyphosis in older adults. However, variations in trunk muscle attenuation with age, sex and between specific muscles have not been investigated. METHODS A cross-sectional examination of trunk muscle attenuation in computed tomography scans was performed in 60 younger (35-50 years) and 60 older (75-87 years) adults randomly selected from participants in the Framingham Heart Study Offspring and Third Generation Multidetector Computed Tomography Study. Computed tomography attenuation of 11 trunk muscles was measured at vertebral levels T8 and L3, and the effects of age, sex, and specific muscle on computed tomography attenuation of trunk muscles were determined. RESULTS Muscle attenuation varied by specific muscle (p < .001), was lower in older adults (p < .001), and was generally lower in women than in men (p < .001), although not in all muscles. Age-related differences in muscle attenuation varied with specific muscle (p < .001), with the largest age differences occurring in the paraspinal and abdominal muscles. CONCLUSIONS Trunk muscle attenuation is lower in older adults than in younger adults in both women and men, but such age-related differences vary widely between muscle groups. The reasons that some muscles exhibit larger age-related differences in fat content than others should be further explored to better understand age-related changes in functional capacity and postural stability.
Journal of Bone and Mineral Research | 2012
Alexander G. Bruno; Dennis E. Anderson; John D'Agostino; Mary L. Bouxsein
To better understand the biomechanical mechanisms underlying the association between hyperkyphosis of the thoracic spine and risk of vertebral fracture and other degenerative spinal pathology, we used a previously validated musculoskeletal model of the spine to determine how thoracic kyphosis angle and spinal posture affect vertebral compressive loading. We simulated an age‐related increase in thoracic kyphosis (T1–T12 Cobb angle 50–75 degrees) during two different activities (relaxed standing and standing with 5‐kg weights in the hands) and three different posture conditions: (1) an increase in thoracic kyphosis with no postural adjustment (uncompensated posture); (2) an increase in thoracic kyphosis with a concomitant increase in pelvic tilt that maintains a stable center of mass and horizontal eye gaze (compensated posture); and (3) an increase in thoracic kyphosis with a concomitant increase in lumbar lordosis that also maintains a stable center of mass and horizontal eye gaze (congruent posture). For all posture conditions, compressive loading increased with increasing thoracic kyphosis, with loading increasing more in the thoracolumbar and lumbar regions than in the mid‐thoracic region. Loading increased the most for the uncompensated posture, followed by the compensated posture, with the congruent posture almost completely mitigating any increases in loading with increased thoracic kyphosis. These findings indicate that both thoracic kyphosis and spinal posture influence vertebral loading during daily activities, implying that thoracic kyphosis measurements alone are not sufficient to characterize the impact of spinal curvature on vertebral loading.
Journal of Biomechanics | 2012
Dennis E. Anderson; John D'Agostino; Alexander G. Bruno; Rajaram K. Manoharan; Mary L. Bouxsein
Musculoskeletal modeling requires information on muscle parameters such as cross-sectional area (CSA) and moment arms. A variety of previous studies have reported muscle parameters in the trunk based on in vivo imaging, but there remain gaps in the available data as well as limitations in the generalizability of such data. Specifically, available trunk muscle CSA data is very limited for older adults, lacking entirely in the thoracic region. In addition, previous studies have made measurements in groups of healthy volunteers or hospital patients who may not be representative of the population in general. Finally, such studies have not reported data for the major muscles connecting the upper limb to the thoracic trunk. In this study, muscle morphology measurements were made for major muscles present in the trunk between vertebral levels T6 and L5 using quantitative computed tomography scans from a community-based sample of 100 men and women aged 36-87. We present regression equations to predict trunk muscle CSA and position relative to the vertebral body in the transverse plane from sex, age, height and weight at vertebral levels T6 to L5. Regressions were also developed for predicting anatomical CSA and muscle moment arms, which were estimated using literature data on muscle line of action. This work thus provides a resource for estimating muscle parameters in the general population for musculoskeletal modeling of the thoraco-lumbar trunk.
Journal of Biomechanical Engineering-transactions of The Asme | 2015
Alexander G. Bruno; Mary L. Bouxsein; Dennis E. Anderson
We developed and validated a fully articulated model of the thoracolumbar spine in opensim that includes the individual vertebrae, ribs, and sternum. To ensure trunk muscles in the model accurately represent muscles in vivo, we used a novel approach to adjust muscle cross-sectional area (CSA) and position using computed tomography (CT) scans of the trunk sampled from a community-based cohort. Model predictions of vertebral compressive loading and trunk muscle tension were highly correlated to previous in vivo measures of intradiscal pressure (IDP), vertebral loading from telemeterized implants and trunk muscle myoelectric activity recorded by electromyography (EMG).
Journal of Biomechanics | 2014
Dennis E. Anderson; Michael L. Madigan
Limited plantar flexor strength and hip extension range of motion (ROM) in older adults are believed to underlie common age-related differences in gait. However, no studies of age-related differences in gait have quantified the percentage of strength and ROM used during gait. We examined peak hip angles, hip torques and plantar flexor torques, and corresponding estimates of functional capacity utilized (FCU), which we define as the percentage of available strength or joint ROM used, in 10 young and 10 older healthy adults walking under self-selected and controlled (slow and fast) conditions. Older adults walked with about 30% smaller hip extension angle, 28% larger hip flexion angle, 34% more hip extensor torque in the slow condition, and 12% less plantar flexor torque in the fast condition than young adults. Older adults had higher FCU than young adults for hip flexion angle (47% vs. 34%) and hip extensor torque (48% vs. 27%). FCUs for plantar flexor torque (both age groups) and hip extension angle (older adults in all conditions; young adults in self-selected gait) were not significantly <100%, and were higher than for other measures examined. Older adults lacked sufficient hip extension ROM to walk with a hip extension angle as large as that of young adults. Similarly, in the fast gait condition older adults lacked the strength to match the plantar flexor torque produced by young adults. This supports the hypothesis that hip extension ROM and plantar flexor strength are limiting factors in gait and contribute to age-related differences in gait.
Journal of Biomechanics | 2010
Dennis E. Anderson; Maury A. Nussbaum; Michael L. Madigan
Moments measured by a dynamometer in biomechanics testing often include the gravitational moment and the passive elastic moment in addition to the moment caused by muscle contraction. Gravitational moments result from the weight of body segments and dynamometer attachment, whereas passive elastic moments are caused by the passive elastic deformation of tissues crossing the joint being assessed. Gravitational moments are a major potential source of error in dynamometer measurements and must be corrected for, a procedure often called gravity correction. While several approaches to gravity correction have been presented in the literature, they generally assume that the gravitational moment can be adequately modeled as a simple sine or cosine function. With this approach, a single passive data point may be used to specify the model, assuming that passive elastic moments are negligible at that point. A new method is presented here for the gravity correction of dynamometer data. Gravitational moment is represented using a generalized sinusoid, which is fit to passive data obtained over the entire joint range of motion. The model also explicitly accounts for the presence of passive elastic moments. The model was tested for cases of hip flexion-extension, knee flexion-extension, and ankle plantar flexion-dorsiflexion, and provided good fits in all cases.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2016
Dennis E. Anderson; Emily Quinn; Emily Parker; Brett T. Allaire; Jesse Muir; Clinton T. Rubin; Jay Magaziner; Marian T. Hannan; Mary L. Bouxsein; Douglas P. Kiel
BACKGROUND Deficits in balance and muscle function are important risk factors for falls in older adults. Aging is associated with significant declines in muscle size and density, but associations of trunk muscle size and density with balance and falls in older adults have not been previously examined. METHODS Trunk muscle size (cross-sectional area) and attenuation (a measure of tissue density) were measured in computed tomography scans (at the L2 lumbar level) in a cohort of older adults (mean ± SD age of 81.9±6.4) residing in independent living communities. Outcome measures were postural sway measured during quiet standing and Short Physical Performance Battery (SPPB) at baseline, and falls reported by participants for up to 3 years after baseline measurements. RESULTS Higher muscle density was associated with reduced postural sway, particularly sway velocities, in both men and women, and better Short Physical Performance Battery score in women, but was not associated with falls. Larger muscle size was associated with increased postural sway in men and women and with increased likelihood of falling in men. CONCLUSIONS The results suggest that balance depends more on muscle quality than on the size of the muscle. The unexpected finding that larger muscle size was associated with increased postural sway and increased fall risk requires further investigation, but highlights the importance of factors besides muscle size in muscle function in older adults.
American Journal of Physical Medicine & Rehabilitation | 2014
Dennis E. Anderson; Jonathan F. Bean; Nicole Holt; John C. Keel; Mary L. Bouxsein
ObjectiveThe aim of this study was to examine the associations of computed tomography-based x-ray attenuation and paraspinal electrical impedance myography measures of trunk muscles with absolute and relative (normalized by body weight) trunk extension strength, independent of muscle cross-sectional area. DesignThis is a cross-sectional study of mobility-limited community-dwelling older adults (34 women, 15 men; mean [SD] age, 78.2 [7.2] yrs) recruited from within an existing prospective research cohort. Trunk extension strength, computed tomography-based trunk muscle cross-sectional area and attenuation at L4 level, and paraspinal electrical impedance myography measures were collected. ResultsAttenuation was positively correlated with absolute and relative strength for multiple muscle groups (r = 0.32–0.61, P < 0.05). Paraspinal electrical impedance myography phase was positively correlated with paraspinal attenuation (r = 0.30, P = 0.039) and with relative strength (r = 0.30, P = 0.042). In multivariable linear regressions adjusting for sex and cross-sectional area, attenuations of the anterior abdominal muscles (semipartial r2 = 0.11, P = 0.013) and combined muscles (semipartial r2 = 0.07, P = 0.046) were associated with relative strength. ConclusionsAlthough attenuation was associated with relative strength, small effect sizes indicate limited usefulness as clinical measures of muscle strength independent of muscle size. However, there remains a need for additional studies in larger and more diverse groups of subjects.
Journal of Biomechanics | 2016
Dennis E. Anderson; Erin M. Mannen; Hadley L. Sis; Benjamin M. Wong; Eileen S. Cadel; Elizabeth A. Friis; Mary L. Bouxsein
The clinical relevance of mechanical testing studies of cadaveric human thoracic spines could be enhanced by using follower preload techniques, by including the intact rib cage, and by measuring thoracic intervertebral disc pressures, but studies to date have not incorporated all of these components simultaneously. Thus, this study aimed to implement a follower preload in the thoracic spine with intact rib cage, and examine the effects of follower load, rib cage stiffening and rib cage removal on intervertebral disc pressures and sagittal plane curvatures in unconstrained static conditions. Intervertebral disc pressures increased linearly with follower load magnitude. The effect of the rib cage on disc pressures in static conditions remains unclear because testing order likely confounded the results. Disc pressures compared well with previous reports in vitro, and comparison with in vivo values suggests the use of a follower load of about 400N to approximate loading in upright standing. Follower load had no effect on sagittal plane spine curvature overall, suggesting successful application of the technique, although increased flexion in the upper spine and reduced flexion in the lower spine suggest that the follower load path was not optimized. Rib cage stiffening and removal both increased overall spine flexion slightly, although with differing effects at specific spinal locations. Overall, the approaches demonstrated here will support the use of follower preloads, intact rib cage, and disc pressure measurements to enhance the clinical relevance of future studies of the thoracic spine.
Journal of Biomechanics | 2016
Hadley L. Sis; Erin M. Mannen; Benjamin M. Wong; Eileen S. Cadel; Mary L. Bouxsein; Dennis E. Anderson; Elizabeth A. Friis
Researchers have reported on the importance of the rib cage in maintaining mechanical stability in the thoracic spine and on the validity of a compressive follower preload. However, dynamic mechanical testing using both the rib cage and follower load has never been studied. An in vitro biomechanical study of human cadaveric thoracic specimens with rib cage intact in lateral bending, flexion/extension, and axial rotation under varying compressive follower preloads was performed. The objective was to characterize the motion and stiffness of the thoracic spine with intact rib cage and follower preload. The hypotheses tested for all modes of bending were (i) range of motion, elastic zone, and neutral zone will be reduced with a follower load, and (ii) neutral and elastic zone stiffness will be increased with a follower load. Eight human cadaveric thoracic spine specimen (T1-T12) with intact rib cage were subjected to 5Nm pure moments in lateral bending, flexion/extension, and axial rotation under follower loads of 0-400N. Range of motion, elastic and neutral zones, and elastic and neutral zone stiffness values were calculated for functional spinal units and segments within the entire thoracic section. Combined segmental range of motion decreased by an average of 34% with follower load for every mode. Application of a follower load with intact rib cage impacts the motion and stiffness of the human cadaveric thoracic spine. Researchers should consider including both aspects to better represent the physiologic implications of human motion and improve clinically relevant biomechanical thoracic spine testing.