Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dennis H. Dowhan is active.

Publication


Featured researches published by Dennis H. Dowhan.


Current Protocols in Molecular Biology | 2002

Preparation and Analysis of DNA

David D. Moore; Dennis H. Dowhan

The ability to prepare and isolate pure DNA from a variety of sources is an important step in many molecular biology protocols. Indeed, the isolation of genomic, plasmid, or DNA fragments from restriction digests and polymerase chain reaction (PCR) products has become a common everyday practice in almost every laboratory. This chapter therefore begins with protocols for purification of genomic DNA from bacteria, plant cells, and mammalian cells (UNITS 2.1-2.4). These protocols consist of two parts: a technique to lyse the cells gently and solubilize the DNA, followed by one of several basic enzymatic or chemical methods to remove contaminating proteins, RNA, and other macromolecules. The basic approaches described here are generally applicable to a wide variety of starting materials. A brief collection of general protocols for further purifying and concentrating nucleic acids is also included.


Molecular and Cellular Biology | 2000

The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression.

Yoon-Kwang Lee; Helen Dell; Dennis H. Dowhan; Margarita Hadzopoulou-Cladaras; David D. Moore

ABSTRACT The orphan nuclear hormone receptor SHP interacts with a number of other nuclear hormone receptors and inhibits their transcriptional activity. Several mechanisms have been suggested to account for this inhibition. Here we show that SHP inhibits transactivation by the orphan receptor hepatocyte nuclear factor 4 (HNF-4) and the retinoid X receptor (RXR) by at least two mechanisms. SHP interacts with the same HNF-4 surface recognized by transcriptional coactivators and competes with them for binding in vivo. The minimal SHP sequences previously found to be required for interaction with other receptors are sufficient for interaction with HNF-4, although deletion results indicate that additional C-terminal sequences are necessary for full binding and coactivator competition. These additional sequences include those associated with direct transcriptional repressor activity of SHP. SHP also competes with coactivators for binding to ligand-activated RXR, and based on the ligand-dependent interaction with other nuclear receptors, it is likely that coactivator competition is a general feature of SHP-mediated repression. The minimal receptor interaction domain of SHP is sufficient for full interaction with RXR, as previously described. This domain is also sufficient for full coactivator competition. Functionally, however, full inhibition of RXR transactivation requires the presence of the C-terminal repressor domain, with only weak inhibition associated with this receptor interaction domain. Overall, these results suggest that SHP represses nuclear hormone receptor-mediated transactivation via two separate steps: first by competition with coactivators and then by direct effects of its transcriptional repressor function.


Journal of Biological Chemistry | 2000

The Farnesoid X-activated Receptor Mediates Bile Acid Activation of Phospholipid Transfer Protein Gene Expression

Nancy L. Urizar; Dennis H. Dowhan; David D. Moore

Bile acids facilitate the absorption of dietary lipids and fat-soluble vitamins and are physiological ligands for the farnesoid X-activated receptor (FXR), a member of the nuclear hormone receptor superfamily. FXR functions as a heterodimer with the retinoid X receptor and in the presence of ligand, the heterodimer binds to specific DNA sequences in the promoters of target genes to regulate gene transcription. Phospholipid transfer protein (PLTP) has been identified as a possible target gene for FXR because the human promoter contains a potential FXR response element, an inverted repeat in which consensus receptor-binding hexamers are separated by one nucleotide (inverted repeat-1). PLTP is essential in the transfer of very low density lipoprotein phospholipids into high density lipoprotein (Jiang, X. C., Bruce, C., Mar, J., Lin, M., Ji, Y., Francone, O. L., and Tall, A. R. (1999) J. Clin. Invest. 103, 907–914). Here we report the regulation of PLTP gene expression by FXR and bile acids. In CV-1 cells, cotransfection of FXR and the retinoid X receptor resulted in bile acid-dependent transactivation of a luciferase reporter construct containing the human PLTP promoter. Mutation analysis demonstrated that the inverted repeat-1 (IR-1) in the PLTP promoter is required for this transactivation. Finally, we demonstrate that bile acids are able to regulate PLTP gene expression in vivo. Mice fed a chow diet supplemented with bile acid showed increased hepatic PLTP mRNA levels. These results suggest that FXR may play a role in high density lipoprotein metabolism via the regulation of PLTP gene expression.


Pharmacogenomics Journal | 2002

Specific and overlapping functions of the nuclear hormone receptors CAR and PXR in xenobiotic response.

P Wei; J Zhang; Dennis H. Dowhan; Y Han; David D. Moore

The products of the cytochrome P450 (CYP) genes play an important role in the detoxification of xenobiotics and environmental contaminants, and many foreign chemicals or xenobiotics can induce their expression. We have previously shown that the nuclear hormone receptor CAR (Constitutive Androstane Receptor, NR113) mediates the well studied induction of CYP2B10 gene expression by phenobarbital (PB) and 1, 4-bis-[2-(3, 5,-dichloropyridyloxy)] benzene (TCPOBOP). We have used the CAR knockout mouse model to explore the broader functions of this xenobiotic receptor. In addition to the liver, CAR is expressed in the epithelial cells of the villi in the small intestine, and this expression is required for CYP2B10 induction in response to PB and TCPOBOP in those cells. In agreement with previous observations that CAR can bind to regulatory elements in CYP3A genes, CAR is also required for induction of expression of CYP3A11 in response to both PB and TCPOBOP in liver. In males, CAR is also required for induction of liver CYP2A4 expression. In wild type animals, pretreatment with the CAR inverse agonist androstenol blocks the response of both the CYP2B10 and CYP3A11 genes to PB and TCPOBOP, and decreases basal CYP3A11 expression. CAR is also required for the response of CYP2B10 to several additional xenobiotic inducers, including chlorpromazine, clotrimazole and dieldrin, but not dexamethasone, an agonist for both the xenobiotic receptor PXR (Pregnane X Receptor NR112) and the glucocorticoid receptor. Chlorpromazine induction of CYP3A11 is also absent in CAR-deficient animals, but the responses to clotrimazole and dieldrin are retained, indicating that both of these inducers can also activate PXR (Pregnane X Receptor NR112). We conclude that CAR has broad functions in xenobiotic responses. Some are specific to CAR but others, including induction of the important drug metabolizing enzyme CYP3A, overlap with those of PXR.


Molecular and Cellular Biology | 2004

CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing.

Didier Auboeuf; Dennis H. Dowhan; Xiaotao Li; Kimberly Larkin; Lan Ko; Susan M. Berget; Bert W. O'Malley

ABSTRACT We have shown that steroid hormones coordinately control gene transcriptional activity and splicing decisions in a promoter-dependent manner. Our hypothesis is that a subset of hormonally recruited coregulators involved in regulation of promoter transcriptional activity also directly participate in alternative RNA splicing decisions. To gain insight into the molecular mechanisms by which transcriptional coregulators could control splicing decisions, we focused our attention on a recently identified coactivator, CoAA. This heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein interacts with the transcriptional coregulator TRBP, a protein recruited to target promoters through interactions with activated nuclear receptors. Using transcriptional and splicing reporter genes driven by different promoters, we observed that CoAA mediates transcriptional and splicing effects in a promoter-preferential manner. We compared the activity of CoAA to the activity of other hnRNP-related proteins that, like CoAA, contain two N-terminal RNA recognition motifs (RRMs) followed by a C-terminal auxiliary domain and either have or have not been implicated in transcriptional control. By swapping either CoAA RRMs or the CoAA auxiliary domain with the corresponding domains of the proteins selected, we showed that depending on the promoter, the RRMs and the auxiliary domain of CoAA are differentially engaged in transcription. This contributes to the promoter-preferential effects mediated by CoAA on RNA splicing during the course of steroid hormone action.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Mechanism of and requirement for estrogen-regulated MYB expression in estrogen-receptor-positive breast cancer cells

Yvette Drabsch; Honor J. Hugo; Rui Zhang; Dennis H. Dowhan; Yu Rebecca Miao; Alan M. Gewirtz; Simon C. Barry; Robert G. Ramsay; Thomas J. Gonda

MYB (the human ortholog of c-myb) is expressed in a high proportion of human breast tumors, and that expression correlates strongly with estrogen receptor (ER) positivity. This may reflect the fact that MYB is a target of estrogen/ER signaling. Because in many cases MYB expression appears to be regulated by transcriptional attenuation or pausing in the first intron, we first investigated whether this mechanism was involved in estrogen/ER modulation of MYB. We found that this was the case and that estrogen acted directly to relieve attenuation due to sequences within the first intron, specifically, a region potentially capable of forming a stem–loop structure in the transcript and an adjacent poly(dT) tract. Secondly, given the involvement of MYB in hematopoietic and colon tumors, we also asked whether MYB was required for the proliferation of breast cancer cells. We found that proliferation of ER+ but not ER− breast cancer cell lines was inhibited when MYB expression was suppressed by using either antisense oligonucleotides or RNA interference. Our results show that MYB is an effector of estrogen/ER signaling and provide demonstration of a functional role of MYB in breast cancer.


Molecular and Cellular Biology | 2005

A Subset of Nuclear Receptor Coregulators Act as Coupling Proteins during Synthesis and Maturation of RNA Transcripts

Didier Auboeuf; Dennis H. Dowhan; Martin Dutertre; Natalia Martin; Susan M. Berget; Bert W. O'Malley

Gene expression is a multistep process starting in the cell nucleus with the synthesis of the primary transcripts that undergo several modifications (including capping, splicing, and polyadenylation) leading to the export of the mature mRNAs into the cytoplasm for translation into proteins. Although an emerging view is that all the steps from transcription to translation are mechanically and functionally coupled, the proteins that are involved in this coupled process are still poorly characterized. In recent years, a growing list of proteins known to control gene expression at the transcriptional level, named transcriptional coregulators, have been independently shown to play additional roles in other steps of gene expression. In this review we compile these emerging data suggesting that a subset of transcriptional coregulators play a major role in the coordination of the individual steps of the gene expression process.


Nucleic Acids Research | 2010

Protein arginine methyltransferase 6 regulates multiple aspects of gene expression

Matthew J. Harrison; Yue Hang Tang; Dennis H. Dowhan

It is well established that transcription and alternative splicing events are functionally coupled during gene expression. Here, we report that protein arginine N-methyltransferase 6 (PRMT6) may play a key role in this coupling process by functioning as a transcriptional coactivator that can also regulate alternative splicing. PRMT6 coactivates the progesterone, glucocorticoid and oestrogen receptors in luciferase reporter assays in a hormone-dependent manner. In addition, small interfering RNA (siRNA) oligonucleotide duplex knockdown of PRMT6 disrupts oestrogen-stimulated transcription of endogenous GREB1 and progesterone receptor in MCF-7 breast cancer cells, demonstrating the importance of PRMT6 in hormone-dependent transcription. In contrast, the regulation of alternative splicing by PRMT6 is hormone independent. siRNA knockdown of PRMT6 increases the exon inclusion:skipping ratio of alternatively spliced exons in endogenous vascular endothelial growth factor and spleen tyrosine kinase RNA transcripts in both the presence and absence of oestrogen. These results demonstrate that PRMT6 has a dual role in regulating gene expression and that these two functions can occur independently of each other.


Biochemical Journal | 2012

CARM1/PRMT4 is necessary for the glycogen gene expression programme in skeletal muscle cells.

Shu-Ching Mary Wang; Dennis H. Dowhan; Natalie A. Eriksson; George E. O. Muscat

CARM1 (co-activator-associated arginine methyltransferase 1)/PRMT4 (protein arginine methyltransferase 4), functions as a co-activator for transcription factors that are regulators of muscle fibre type and oxidative metabolism, including PGC (peroxisome-proliferator-activated receptor γ co-activator)-1α and MEF2 (myocyte enhancer factor 2). We observed significantly higher Prmt4 mRNA expression in comparison with Prmt1-Prmt6 mRNA expression in mouse muscle (in vitro and in vivo). Transfection of Prmt4 siRNA (small interfering RNA) into mouse skeletal muscle C2C12 cells attenuated PRMT4 mRNA and protein expression. We subsequently performed additional qPCR (quantitative PCR) analysis (in the context of metabolism) to examine the effect of Prmt4 siRNA expression on >200 critical genes that control (and are involved in) lipid, glucose and energy homoeostasis, and circadian rhythm. This analysis revealed a strikingly specific metabolic expression footprint, and revealed that PRMT4 is necessary for the expression of genes involved in glycogen metabolism in skeletal muscle cells. Prmt4 siRNA expression selectively suppressed the mRNAs encoding Gys1 (glycogen synthase 1), Pgam2 (muscle phosphoglycerate mutase 2) and Pygm (muscle glycogen phosphorylase). Significantly, PGAM, PYGM and GYS1 deficiency in humans causes glycogen storage diseases type X, type V/McArdles disease and type 0 respectively. Attenuation of PRMT4 was also associated with decreased expression of the mRNAs encoding AMPK (AMP-activated protein kinase) α2/γ3 (Prkaa2 and Prkag3) and p38 MAPK (mitogen-activated protein kinase), previously implicated in Wolff-Parkinson-White syndrome and Pompe Disease (glycogen storage disease type II). Furthermore, stable transfection of two PRMT4-site-specific (methyltransferase deficient) mutants (CARM1/PRMT4 VLD and CARM1E267Q) significantly repressed the expression of Gys1, Pgam2 and AMPKγ3. Finally, in concordance, we observed increased and decreased glycogen levels in PRMT4 (native)- and VLD (methylation deficient mutant)-transfected skeletal muscle cells respectively. This demonstrated that PRMT4 expression and the associated methyltransferase activity is necessary for the gene expression programme involved in glycogen metabolism and human glycogen storage diseases.


Endocrine-related Cancer | 2012

Protein arginine methyltransferase 6-dependent gene expression and splicing: association with breast cancer outcomes

Dennis H. Dowhan; Matthew J. Harrison; Natalie A. Eriksson; Peter Bailey; Michael A. Pearen; Peter J. Fuller; John W. Funder; Evan R. Simpson; Peter J. Leedman; Wayne D. Tilley; Melissa A. Brown; Christine L. Clarke; George E. O. Muscat

Protein arginine methyltransferase-6 (PRMT6) regulates steroid-dependent transcription and alternative splicing and is implicated in endocrine system development and function, cell death, cell cycle, gene expression and cancer. Despite its role in these processes, little is known about its function and cellular targets in breast cancer. To identify novel gene targets regulated by PRMT6 in breast cancer cells, we used a combination of small interfering RNA and exon-specific microarray profiling in vitro coupled to in vivo validation in normal breast and primary human breast tumours. This approach, which allows the examination of genome-wide changes in individual exon usage and total transcript levels, demonstrated that PRMT6 knockdown significantly affected i) the transcription of 159 genes and ii) alternate splicing of 449 genes. The PRMT6-dependent transcriptional and alternative splicing targets identified in vitro were validated in human breast tumours. Using the list of genes differentially expressed between normal and PRMT6 knockdown cells, we generated a PRMT6-dependent gene expression signature that provides an indication of PRMT6 dysfunction in breast cancer cells. Interrogation of several well-studied breast cancer microarray expression datasets with the PRMT6 gene expression signature demonstrated that PRMT6 dysfunction is associated with better overall relapse-free and distant metastasis-free survival in the oestrogen receptor (ER (ESR1)) breast cancer subgroup. These results suggest that dysregulation of PRMT6-dependent transcription and alternative splicing may be involved in breast cancer pathophysiology and the molecular consequences identifying a unique and informative biomarker profile.

Collaboration


Dive into the Dennis H. Dowhan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David D. Moore

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bert W. O'Malley

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Michael Downes

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Susan M. Berget

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evan R. Simpson

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

John W. Funder

Hudson Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge