Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dennis J. Boccippio is active.

Publication


Featured researches published by Dennis J. Boccippio.


Journal of Geophysical Research | 2003

Global frequency and distribution of lightning as observed from space by the Optical Transient Detector

Hugh J. Christian; Richard J. Blakeslee; Dennis J. Boccippio; William L. Boeck; Dennis E. Buechler; Kevin T. Driscoll; Steven J. Goodman; John Hall; William J. Koshak; Douglas M. Mach; Michael F. Stewart

of uncertainty for the OTD global totals represents primarily the uncertainty (and variability) in the flash detection efficiency of the instrument. The OTD measurements have been used to construct lightning climatology maps that demonstrate the geographical and seasonal distribution of lightning activity for the globe. An analysis of this annual lightning distribution confirms that lightning occurs mainly over land areas, with an average land/ocean ratio of 10:1. The Congo basin, which stands out year-round, shows a peak mean annual flash density of 80 fl km 2 yr 1 in Rwanda, and includes an area of over 3 million km 2 exhibiting flash densities greater than 30 fl km 2 yr 1 (the flash density of central Florida). Lightning is predominant in the northern Atlantic and western Pacific Ocean basins year-round where instability is produced from cold air passing over warm ocean water. Lightning is less frequent in the eastern tropical Pacific and Indian Ocean basins where the air mass is warmer. A dominant Northern Hemisphere summer peak occurs in the annual cycle, and evidence is found for a tropically driven semiannual cycle. INDEX TERMS: 3304 Meteorology and Atmospheric Dynamics: Atmospheric electricity; 3309 Meteorology and Atmospheric Dynamics: Climatology (1620); 3324 Meteorology and Atmospheric Dynamics: Lightning; 3394 Meteorology and Atmospheric Dynamics: Instruments and techniques;


Science | 1995

Sprites, ELF Transients, and Positive Ground Strokes

Dennis J. Boccippio; Earle R. Williams; Stan Heckman; Walter A. Lyons; Ian T. Baker; Robert Boldi

In two summertime mesoscale convective systems (MCSs), mesospheric optical sprite phenomena were often coincident with both large-amplitude positive cloud-to-ground lightning and transient Schumann resonance excitations of the entire Earth-ionosphere cavity. These observations, together with earlier studies of MCS electrification, suggest that sprites are triggered when the rapid removal of large quantities of positive charge from an areally extensive charge layer stresses the mesosphere to dielectric breakdown.


Monthly Weather Review | 2001

Combined Satellite- and Surface-Based Estimation of the Intracloud–Cloud-to-Ground Lightning Ratio over the Continental United States

Dennis J. Boccippio; Kenneth L. Cummins; Hugh J. Christian; Steven J. Goodman

Abstract Four years of observations from the NASA Optical Transient Detector and Global Atmospherics National Lightning Detection Network are combined to determine the geographic distribution of the climatological intracloud–cloud-to-ground (CG) lightning ratio, termed Z, over the continental United States. The value of Z over this region is 2.64–2.94, with a standard deviation of 1.1–1.3 and anomalies as low as 1.0 or less over the Rocky and Appalachian Mountains and as high as 8–9 in the central-upper Great Plains. There is some indication that Z covaries with ground elevation, although the relationship is nonunique. Little evidence is found to support a latitudinal covariance. The dynamic range of local variability is comparable to the range of values cited by previous studies for latitudinal variation from the deep Tropics to midlatitudes. Local high Z anomalies in the Great Plains are coincident with anomalies in the climatological percentage of positive CG occurrence, as well as in the occurrence of...


Journal of Applied Meteorology | 2000

Regional Differences in Tropical Lightning Distributions

Dennis J. Boccippio; Steven J. Goodman; Stan Heckman

Abstract Observations from the National Aeronautics and Space Administration Optical Transient Detector (OTD) and Tropical Rainfall Measuring Mission (TRMM)-based Lightning Imaging Sensor (LIS) are analyzed for variability between land and ocean, various geographic regions, and different (objectively defined) convective “regimes.” The bulk of the order-of-magnitude differences between land and ocean regional flash rates are accounted for by differences in storm spacing (density) and/or frequency of occurrence, rather than differences in storm instantaneous flash rates, which only vary by a factor of 2 on average. Regional variability in cell density and cell flash rates closely tracks differences in 85-GHz microwave brightness temperatures. Monotonic relationships are found with the gross moist stability of the tropical atmosphere, a large-scale “adjusted state” parameter. This result strongly suggests that it will be possible, using TRMM observations, to objectively test numerical or theoretical predicti...


Journal of Atmospheric and Oceanic Technology | 2002

Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted Diurnal Variability

Dennis J. Boccippio; William J. Koshak; Richard J. Blakeslee

Abstract Laboratory calibration and observed background radiance data are used to determine the effective sensitivities of the Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS), as functions of local hour and pixel location within the instrument arrays. The effective LIS thresholds, expressed as radiances emitted normal to cloud top, are 4.0 ± 0.7 and 7.6 ± 3.3 μJ sr−1 m−2 for night and local noon; the OTD thresholds are 11.7 ± 2.2 and 16.8 ± 4.6 μJ sr−1 m−2. LIS and OTD minimum signal-to-noise ratios occur from 0800 to 1600 local time, and attain values of 10 ± 2 and 20 ± 3, respectively. False alarm rate due to instrument noise yields ∼5 false triggers per month for LIS, and is negligible for OTD. Flash detection efficiency, based on prior optical pulse sensor measurements, is predicted to be 93 ± 4% and 73 ± 11% for LIS night and noon; 56 ± 7% and 44 ± 9% for OTD night and noon, corresponding to a 12%–20% diurnal variability and LIS:OTD ratio of 1.7. Use of the weighted daily mean det...


Monthly Weather Review | 2005

Three Years of TRMM Precipitation Features. Part I: Radar, Radiometric, and Lightning Characteristics

Daniel J. Cecil; Steven J. Goodman; Dennis J. Boccippio; Edward J. Zipser; Stephen W. Nesbitt

Abstract During its first three years, the Tropical Rainfall Measuring Mission (TRMM) satellite observed nearly six million precipitation features. The population of precipitation features is sorted by lightning flash rate, minimum brightness temperature, maximum radar reflectivity, areal extent, and volumetric rainfall. For each of these characteristics, essentially describing the convective intensity or the size of the features, the population is broken into categories consisting of the top 0.001%, top 0.01%, top 0.1%, top 1%, top 2.4%, and remaining 97.6%. The set of “weakest/smallest” features composes 97.6% of the population because that fraction does not have detected lightning, with a minimum detectable flash rate of 0.7 flashes (fl) min−1. The greatest observed flash rate is 1351 fl min−1; the lowest brightness temperatures are 42 K (85 GHz) and 69 K (37 GHz). The largest precipitation feature covers 335 000 km2, and the greatest rainfall from an individual precipitation feature exceeds 2 × 1012 k...


Journal of Atmospheric and Oceanic Technology | 2000

The Optical Transient Detector (OTD): Instrument Characteristics and Cross-Sensor Validation

Dennis J. Boccippio; William J. Koshak; Richard J. Blakeslee; Kevin T. Driscoll; Douglas M. Mach; Dennis E. Buechler; William L. Boeck; Hugh J. Christian; Steven J. Goodman

Abstract Lightning data from the U.S. National Lightning Detection Network (NLDN) are used to perform preliminary validation of the satellite-based Optical Transient Detector (OTD). Sensor precision, accuracy, detection efficiency, and biases of the deployed instrument are considered. The sensor is estimated to have, on average, about 20–40-km spatial and better than 100-ms temporal accuracy. The detection efficiency for cloud-to-ground lightning is about 46%–69%. It is most likely slightly higher for intracloud lightning. There are only marginal day/night biases in the dataset, although 55- or 110-day averaging is required to remove the sampling-based diurnal lightning cycle bias.


Geophysical Research Letters | 2000

Comparison of ground‐based 3‐dimensional lightning mapping observations with satellite‐based LIS observations in Oklahoma

Robert J. Thomas; Paul Krehbiel; W. Rison; Timothy Hamlin; Dennis J. Boccippio; Steven J. Goodman; Hugh J. Christian

3-dimensional lightning mapping observations obtained during the MEaPRS program in central Oklahoma during June, 1998 have been compared with observations of the discharges from space, obtained by NASAs Lightning Imaging Sensor (LIS) on the TRMM satellite. Excellent spatial and temporal correlations were observed between the two sets of observations. Most of the detected optical events were associated with intracloud discharges that developed into the upper part of the storm. Cloud-to-ground discharges that were confined to mid- and lower-altitudes tended not to be detected by LIS. Extensive illumination tended to occur in impulsive bursts toward the end or part way through intracloud flashes and appeared to be produced by energetic K-changes that typically occur at these times.


Journal of Atmospheric and Oceanic Technology | 2004

North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses

W. J. K Oshak; R. J. Solakiewicz; Richard J. Blakeslee; Steven J. Goodman; Hugh J. Christian; John Hall; J. C. Bailey; E. P. Krider; Monte G. Bateman; Dennis J. Boccippio; Douglas M. Mach; E. W. Mccaul; M. F. Stewart; Dennis E. Buechler; W. A. P Etersen; D. J. Cecil

Two approaches are used to characterize how accurately the north Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA Marshall Space Flight Center (MSFC) and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix Theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50 ns, but all other possible errors (e.g., anomalous VHF noise sources) are neglected. The detailed spatial distributions of retrieval errors are provided. Even though the two methods are independent of one another, they nevertheless provide remarkably similar results. However, altitude error estimates derived from the two methods differ (the Monte Carlo result being taken as more accurate). Additionally, this study clarifies the mathematical retrieval process. In particular, the mathematical difference between the first-guess linear solution and the Marquardt-iterated solution is rigorously established thereby explaining why Marquardt iterations improve upon the linear solution.


Journal of Geophysical Research | 2001

A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data

Tomoo Ushio; Stan Heckman; Dennis J. Boccippio; Hugh J. Christian; Zen-Ichiro Kawasaki

The relationship between cloud height and lightning activity is examined using data from the Tropical Rainfall Measuring Mission (TRMM) satellite. Coincident data from the precipitation radar (PR) and Lightning Imaging Sensor aboard the TRMM satellite are used to examine whether lightning flash rate is proportional to the fifth power of cloud top height. This study is unique in that (1) the relationship between instantaneous rather than maximum storm height and flash rate is obtained and (2) relatively unbiased full data sets for different locations and seasons over the globe are used. The relationship between thunderstorm height and flash rate is nonlinear with large variance. The overall trend shows that flash rate increases exponentially with storm height. Some tall thunderstorms do not have large flash rates, but the reverse situation never occurs. The fifth power dependency that is derived from scaling laws is not inconsistent with, but not necessarily required by, the observed data.

Collaboration


Dive into the Dennis J. Boccippio's collaboration.

Top Co-Authors

Avatar

Hugh J. Christian

University of Alabama in Huntsville

View shared research outputs
Top Co-Authors

Avatar

Steven J. Goodman

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Richard J. Blakeslee

Marshall Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William J. Koshak

Marshall Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Earle R. Williams

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis E. Buechler

University of Alabama in Huntsville

View shared research outputs
Top Co-Authors

Avatar

Kevin T. Driscoll

University of Alabama in Huntsville

View shared research outputs
Top Co-Authors

Avatar

Douglas M. Mach

University of Alabama in Huntsville

View shared research outputs
Researchain Logo
Decentralizing Knowledge