Dennis L. Hlavka
Goddard Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dennis L. Hlavka.
Journal of Geophysical Research | 2003
Beat Schmid; J. Redemann; P. B. Russell; Peter V. Hobbs; Dennis L. Hlavka; Matthew J. McGill; Brent N. Holben; Ellsworth J. Welton; James R. Campbell; Omar Torres; Ralph A. Kahn; David J. Diner; Mark C. Helmlinger; D. A. Chu; C. Robles-Gonzalez; G. de Leeuw
During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (λ = 0.354-1.557 μm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washingtons Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).
Proceedings of the National Academy of Sciences of the United States of America | 2013
Eric J. Jensen; Glenn S. Diskin; R. Paul Lawson; S. Lance; T. Paul Bui; Dennis L. Hlavka; Matthew J. McGill; Leonhard Pfister; Owen B. Toon; R. S. Gao
Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth’s radiation budget and climate. Recent high-altitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to ∼70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L−1 (often less than 20 L−1), whereas the high ice concentration layers (with concentrations up to 10,000 L−1) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as ∼1.7 times the ice saturation mixing ratio.
Bulletin of the American Meteorological Society | 2000
R. A. Peppler; C. P. Bahrmann; J. C. Barnard; James R. Campbell; Meng-Dawn Cheng; Richard A. Ferrare; R. N. Halthore; L. A. HeiIman; Dennis L. Hlavka; N. S. Laulainen; Che-Jen Lin; John A. Ogren; Michael R. Poellot; Lorraine A. Remer; Kenneth Sassen; James D. Spinhirne; Michael E. Splitt; David D. Turner
Drought-stricken areas of Central America and Mexico were victimized in 1998 by forest and brush fires that burned out of control during much of the first half of the year. Wind currents at various times during the episode helped transport smoke from these fires over the Gulf of Mexico and into portions of the United States. Visibilities were greatly reduced during favorable flow periods from New Mexico to south Florida and northward to Wisconsin as a result of this smoke and haze. In response to the reduced visibilities and increased pollutants, public health advisories and information statements were issued by various agencies in Gulf Coast states and in Oklahoma. This event was also detected by a unique array of instrumentation deployed at the U.S. Department of Energys Atmospheric Radiation Measurement (ARM) program Southern Great Plains Cloud and Radiation Testbed and by sensors of the Oklahoma Department of Environmental Quality/Air Quality Division. Observations from these measurement devices sugg...
Journal of the Atmospheric Sciences | 1996
James D. Spinhirne; William D. Hart; Dennis L. Hlavka
Abstract A summary of experimental observations and analysis of cirrus from high-altitude aircraft remote sensing is presented. The vertical distribution of cirrus optical and infrared cross-section parameters and the relative effective emittance and visible reflectance are derived from nadir-viewing lidar and multispectral radiometer data for observations during the 1986 and 1991 FIRE cirrus experiments. Statistics on scattering and absorption cross sections in relation to altitude and temperature are given. The emittance and reflectance results are considered as a function of solar zenith angle. Comparative radiative transfer calculations based on the discrete-ordinate method were carried out for three representative cloud phase function models: a spherical water droplet, an ice column crystal cloud, and a Henyey-Greenstein function. The agreements between observations of the effective emittance and shortwave reflectance and the model calculations were a function of the solar zenith angle. At angles bet...
Journal of Geophysical Research | 2004
Matthew J. McGill; Lihua Li; William D. Hart; Gerald M. Heymsfield; Dennis L. Hlavka; P. Racette; L. Tian; Mark A. Vaughan; D. M. Winker
In the near future NASA plans to fly satellites carrying a multi-wavelength backscatter lidar and a 94-GHz cloud profiling radar in formation to provide complete global profiling of cloud and aerosol properties. The CRYSTAL-FACE field campaign, conducted during July 2002, provided the first high-altitude colocated measurements from lidar and cloud profiling radar to simulate these spaceborne sensors. The lidar and radar provide complementary measurements with varying degrees of measurement overlap. This paper presents initial results of the combined airborne lidar-radar measurements during CRYSTAL-FACE. The overlap of instrument sensitivity is presented, within the context of particular CRYSTAL-FACE conditions. Results are presented to quantify the portion of atmospheric profiles sensed independently by each instrument and the portion sensed simultaneously by the two instruments.
Journal of Atmospheric and Oceanic Technology | 2006
Robert E. Holz; Steve Ackerman; Paolo Antonelli; Fred W. Nagle; Robert O. Knuteson; Matthew J. McGill; Dennis L. Hlavka; William D. Hart
Abstract An improvement to high-spectral-resolution infrared cloud-top altitude retrievals is compared to existing retrieval methods and cloud lidar measurements. The new method, CO2 sorting, determines optimal channel pairs to which the CO2 slicing retrieval will be applied. The new retrieval is applied to aircraft Scanning High-Resolution Interferometer Sounder (S-HIS) measurements. The results are compared to existing passive retrieval methods and coincident Cloud Physics Lidar (CPL) measurements. It is demonstrated that when CO2 sorting is used to select channel pairs for CO2 slicing there is an improvement in the retrieved cloud heights when compared to the CPL for the optically thin clouds (total optical depths less than 1.0). For geometrically thick but tenuous clouds, the infrared retrieved cloud tops underestimated the cloud height, when compared to those of the CPL, by greater than 2.5 km. For these cases the cloud heights retrieved by the S-HIS correlated closely with the level at which the CPL...
Bulletin of the American Meteorological Society | 2017
Eric J. Jensen; Leonhard Pfister; David E. Jordan; Thaopaul V. Bui; Rei Ueyama; Hanwant B. Singh; Troy Thornberry; Andrew W. Rollins; Ru Shan Gao; D. W. Fahey; Karen H. Rosenlof; J. W. Elkins; Glenn S. Diskin; Joshua P. DiGangi; R. Paul Lawson; Sarah Woods; Elliot Atlas; Maria A. Rodriguez; Steven C. Wofsy; J. V. Pittman; Charles G. Bardeen; Owen B. Toon; Bruce C. Kindel; Paul A. Newman; Matthew J. McGill; Dennis L. Hlavka; Leslie R. Lait; Mark R. Schoeberl; John W. Bergman; Henry B. Selkirk
AbstractThe February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX da...
Journal of Atmospheric and Oceanic Technology | 2011
John E. Yorks; Dennis L. Hlavka; William D. Hart; Matthew James McGill
AbstractAccurate knowledge of cloud optical properties, such as extinction-to-backscatter ratio and depolarization ratio, can have a significant impact on the quality of cloud extinction retrievals from lidar systems because parameterizations of these variables are often used in nonideal conditions to determine cloud phase and optical depth. Statistics and trends of these optical parameters are analyzed for 4 yr (2003–07) of cloud physics lidar data during five projects that occurred in varying geographic locations and meteorological seasons. Extinction-to-backscatter ratios (also called lidar ratios) are derived at 532 nm by calculating the transmission loss through the cloud layer and then applying it to the attenuated backscatter profile in the layer, while volume depolarization ratios are computed using the ratio of the parallel and perpendicular polarized 1064-nm channels. The majority of the cloud layers yields a lidar ratio between 10 and 40 sr, with the lidar ratio frequency distribution centered ...
Journal of Geophysical Research | 2010
Anne M. Thompson; Alaina M. MacFarlane; Gary A. Morris; John E. Yorks; Sonya K. Miller; B. F. Taubman; Gé Verver; H. Vömel; Melody A. Avery; Johnathan W. Hair; Glenn S. Diskin; Edward V. Browell; Jessica Valverde Canossa; Tom L. Kucsera; Christopher A. Klich; Dennis L. Hlavka
[1] During the TC4 (Tropical Composition, Clouds, and Climate Coupling) campaign in July–August 2007, daily ozonesondes were launched over coastal Las Tablas, Panama (7.8°N, 80°W) and several times per week at Alajuela, Costa Rica (10°N, 84°W). Wave activity, detected most prominently in 100–300 m thick ozone laminae in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves (GW, possibly Kelvin waves) by laminar identification, occur with similar structure and frequency over the Paramaribo (5.8°N, 55°W) and San Cristobal (0.92°S, 90°W) Southern Hemisphere Additional Ozonesondes (SHADOZ) sites. GW‐labeled laminae in individual soundings correspond to cloud outflow as indicated by DC‐8 tracers and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi‐ horizontal displacements, referred to as Rossby waves by the laminar technique, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extratropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999– 2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated waves appear to dominate ozone transport in the tropical tropopause layer; intrusions from the extratropics occur throughout the free troposphere.
Geophysical Research Letters | 2005
William D. Hart; James D. Spinhirne; Steven P. Palm; Dennis L. Hlavka
[1] The Geoscience Laser Altimeter System (GLAS), a nadir pointing lidar on the Ice Cloud and land Elevation Satellite (ICESat) launched in 2003, now provides important new global measurements of the relationship between the height distribution of cloud and aerosol layers. GLAS data have the capability to detect, locate, and distinguish between cloud and aerosol layers in the atmosphere up to 40 km altitude. The data product algorithm tests the product of the maximum attenuated backscatter coefficient b 0 (r) and the vertical gradient of b 0 (r) within a layer against a predetermined threshold. An initial case result for the critical Indian Ocean region is presented. From the results the relative height distribution between collocated aerosol and cloud shows extensive regions where cloud formation is well within dense aerosol scattering layersatthesurface. Citation: Hart, W. D., J. D. Spinhirne, S. P. Palm, and D. L. Hlavka (2005), Height distribution between cloud and aerosol layers from the GLAS spaceborne lidar in the Indian Ocean region, Geophys. Res. Lett., 32, L22S06, doi:10.1029/ 2005GL023671.