Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dennis P. Swaney is active.

Publication


Featured researches published by Dennis P. Swaney.


Biogeochemistry | 1996

Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences

Robert W. Howarth; Gilles Billen; Dennis P. Swaney; A.R. Townsend; Norbert A. Jaworski; Kate Lajtha; John A. Downing; Ragnar Elmgren; N. F. Caraco; Thomas E. Jordan; Frank Berendse; J. R. Freney; V. Kudeyarov; Peter S. Murdoch; Zhu Zhao-Liang

We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr-1 out of a total for the entire North Atlantic region of 13.1 Tg yr-1. On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km-2 yr-1.


BioScience | 2003

Humans, Hydrology, and the Distribution of Inorganic Nutrient Loading to the Ocean

Stephen V. Smith; Dennis P. Swaney; Liana Talaue-McManus; Jeremy D. Bartley; Peder T. Sandhei; C.J. McLaughlin; Vilma Dupra; Chris J. Crossland; Robert W. Buddemeier; Bruce Allen Maxwell; Fredrik Wulff

Abstract Most modern estimates of dissolved nitrogen and phosphorus delivery to the ocean use Meybecks estimates from approximately 30 large rivers. We have derived an extended database of approximately 165 sites with nutrient loads. For both dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP), the logarithmic yields (log [load/area]) can be parameterized as functions of log (population density) and log (runoff/area) (R2 for DIN and DIP approximately 0.6). Landscape production of DIN and DIP is largely assimilated. Even though DIN and DIP follow substantially different biogeochemical cycles, loading for DIN and DIP is tightly coupled (R2 for log DIN versus log DIP approximately 0.8), with a constant loading ratio of about 18:1. Estimates of DIN and DIP fluxes are distributed globally around the world coastlines by using basin population density and runoff at 0.5° increments of latitude and longitude. We estimate that total loads for the 1990s are about three times Meybecks estimates for the 1970s.


Ecosystems | 2000

Climatic control on eutrophication of the Hudson River estuary.

Robert W. Howarth; Dennis P. Swaney; Thomas J. Butler; Roxanne Marino

ABSTRACT Eutrophication is arguably the biggest pollution problem facing estuaries globally, with extensive consequences including anoxic and hypoxic waters, reduced fishery harvests, toxic algal blooms, and loss of biotic diversity. However, estuaries vary greatly in their susceptibility to eutrophication. The Hudson River estuary receives very high levels of nutrient inputs yet in the past has shown relatively low rates of phytoplankton productivity and is generally considered to be only moderately susceptible to eutrophication. Here, we show that eutrophication and primary production in the Hudson estuary can increase dramatically in response to climatic variation and lowered freshwater discharge from the watershed. During dry summer periods in 1995 and 1997, rates of primary production were substantially higher than those measured during the 1970s, when freshwater discharge tended to be high. In the Hudson, low freshwater discharge increases waterresidence times and stratification and deepens the photic zone, all of which (alone or in combination) could lead to the observed increase in primary production. Our data, along with the prediction of most climate change models that freshwater discharge will be lower in the future during the summer in the northeastern US, suggest that the Hudson will become more susceptible to eutrophication. Eutrophication in an estuary is a complex process, and climate change is likely to affect each estuary differently due to interactions with nutrient loadings and physical circulation. Hence, it is essential to consider the effects of climate change in the context of individual estuarine functioning to successfully manage eutrophication in the future.


Frontiers in Ecology and the Environment | 2012

Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate

Robert W. Howarth; Dennis P. Swaney; Gilles Billen; Josette Garnier; Bongghi Hong; Christoph Humborg; Penny J Johnes; Carl-Magnus Mörth; Roxanne Marino

The flux of nitrogen (N) to coastal marine ecosystems is strongly correlated with the “net anthropogenic nitrogen inputs” (NANI) to the landscape across 154 watersheds, ranging in size from 16 km2 to 279 000 km2, in the US and Europe. When NANI values are greater than 1070 kg N km−2 yr−1, an average of 25% of the NANI is exported from those watersheds in rivers. Our analysis suggests a possible threshold at lower NANI levels, with a smaller fraction exported when NANI values are below 1070 kg N km−2 yr−1. Synthetic fertilizer is the largest component of NANI in many watersheds, but other inputs also contribute substantially to the N fluxes; in some regions, atmospheric deposition of N is the major component. The flux of N to coastal areas is controlled in part by climate, and a higher percentage of NANI is exported in rivers, from watersheds that have higher freshwater discharge.


Estuaries | 1996

Metabolism and organic carbon fluxes in the tidal freshwater Hudson River

Robert W. Howarth; Rebecca L. Schneider; Dennis P. Swaney

We summarize rates of metabolism and major sources and sinks of organic carbon in the 148-k long, tidally influenced, freshwater Hudson River. The river is strongly heterotrophic, with respiration exceeding gross primary production (GPP). The P:R ration averages 0.57 (defined as the ratio of GPP to total ecosystem respiration) if only the aquatic portion of the ecosystem is considered and 0.70 if the emergent marshes are also included. Gross primary production (GPP) by photoplankton averages approximately 300 g C m−2 yr−1 and is an order of magnitude greater than that by submersed macrophytes. However, the river is deep, well mixed, and turbid, and phytoplankton spend a majority of their time in the dark. As a result, respiration by living phytoplankton is extremely high and net primary production (NPP) by phytoplankton is estimated to be only some 6% of GPP. NPP by phytoplankton and submersed macrophytes are roughly equal (approximately 20 g C m−2 yr−1 each) when averaged over the river. Emergent marshes are quite productive, but probably less than 16 g C m−2 yr−1 enters the aquatic portion of the ecosystem from these marshes. Heterotrophic respiration and secondary production in the river are driven primarily by allochthonous inputs of organic matter from terrestrial sources. Rates of metabolism vary along the river, with depth being a critical controlling factor. The P:R ratio for the aquatic portion of the ecosystem varies from 1 in the mid-river to 0.2 in the deeper waters. NPP is actually negative in the downstream waters where average depths are greater since phytoplankton respiration exceeds GPP there; the positive rates of NPP occurring upriver support a downstream advection of phytoplankton to the deeper waters where this C is largely respired away by the algae themselves. This autotrophic respiration contributes significantly to oxygen depletion in the deeper waters of the Hudson. The tidally influenced freshwater Hudson largely fits the patterns predicted by the river continuum model for larger rivers. However, we suggest that the continuum model needs to more clearly distinguish between GPP and NPP and should include the importance of autotrophic respiration by phytoplankton that are advected along a river. The organic carbon budget for the tidally influenced freshwater Hudson is balanced to within a few percent. Respiration (54%) and downstream advection into the saline estuary (41%) are the major losses of organic carbon from the ecosystem. Allochthonous inputs from nonpoint sources on land (61%) and GPP by phytoplankton (28%) are the major sources to the system. Agricultural erosion is the major source of allochthonous inputs. Since agricultural land use increased dramatically in the last century, and has fallen in this century, the carbon cycle of the tidally influenced freshwater Hudson River has probably changed markedly over time. Before human disturbance, the Hudson was probably a less heterotrophic system and may even have been autotrophic, with gross primary production exceeding ecosystem respiration.


Water Resources Research | 1999

Effect of grid size on runoff and soil moisture for a variable‐source‐area hydrology model

Wen-Ling Kuo; Tammo S. Steenhuis; Charles E. McCulloch; Charles L. Mohler; David A. Weinstein; Stephen D. DeGloria; Dennis P. Swaney

Soil chemical and biological dynamics in mixed use landscapes are dependent on the distribution and pattern of soil moisture and water transport. In this paper we examine the effect of different grid sizes on soil water content for a spatially explicit, variable-source-area hydrology model applied to a watershed in central New York. Data on topography, soil type, and land use were input at grid sizes from 10 to 600 m. Output data consisted of runoff and spatial pattern of soil moisture. To characterize the spatial variability at different grid sizes, information theory was used to calculate the information content of the input and output variables. Simulation results showed higher average soil water contents and higher evaporation rates for large grid sizes. During a wet year, runoff was not affected by grid size, whereas during a dry year runoff was greatest for the smallest grid size. While the information content (i.e., spatial variability) of soil type and land use maps was not affected by the different grid sizes, increasing grid sizes caused the information content of the slope gradient to decrease slightly and the Laplacian (or curvature of the landscape) to decrease greatly. In other words, increasing grid cell size misrepresented the curvature of the landscape. During wet periods the decrease in information content of the soil moisture data was the same as for the Laplacian as grid size increased. During dry periods, when local fluxes such as evaporation and runoff determine the moisture content, this relation did not exist. The Laplacian can be used to provide a priori estimates of the moisture content deviations by aggregation. These deviations will be much smaller for the slowly undulating landscapes than the landscape with steep valleys simulated in this study.


Mycologia | 2011

95% of basidiospores fall within 1 m of the cap: a field- and modeling-based study

Tera E. Galante; Thomas R. Horton; Dennis P. Swaney

Plant establishment patterns suggest that ectomycorrhizal fungal (EMF) inoculant is not found ubiquitously. The role of animal vectors dispersing viable EMF spores is well documented. Here we investigate the role of wind in basidiospore dispersal for six EMF species, Inocybe lacera, Laccaria laccata, Lactarius rufus, Suillus brevipes, Suillus tomentosus and Thelephora americana. Basidiospores adhered to microscope slides placed on three 60 cm transects radiating from sporocarps. Morphological characteristics of species as well as average basidiospore volume were recorded. Number of basidiospores was quantified at specific distances to produce actual dispersal gradients. We found a negative exponential decay model using characteristics for each species fit the field data well. The 95% modeled downwind dispersal distance of basidiospores was calculated for each species. The 95% modeled downwind dispersal distance increased with increasing cap height and decreasing basidiospore volume for the species sampled, with 95% of basidiospores predicted to fall within 58 cm of the cap. Differences in anatomical characteristics of EMF species influence how far basidiospores are dispersed by wind. We discuss the role of wind dispersal leading to patterns of EMF establishment during primary succession.


Environmental Science & Technology | 2013

Estimating net anthropogenic nitrogen inputs to U.S. watersheds: comparison of methodologies.

Bongghi Hong; Dennis P. Swaney; Robert W. Howarth

The net anthropogenic nitrogen input (NANI) approach is a simple quasi-mass-balance that estimates the human-induced nitrogen inputs to a watershed. Across a wide range of watersheds, NANI has been shown to be a good predictor of riverine nitrogen export. In this paper, we review various methodologies proposed for NANI estimation since its first introduction and evaluate alternative calculations suggested by previous literature. Our work is the first study in which a consistent NANI calculation method is applied across the U.S. watersheds and tested against available riverine N flux estimates. Among the tested methodologies, yield-based estimation of agricultural N fixation (instead of crop area-based) made the largest difference, especially in some Mississippi watersheds where the tile drainage was a significant factor reducing watershed N retention. Across the U.S. watersheds, NANI was particularly sensitive to farm N fertilizer application, cattle N consumption, N fixation by soybeans and alfalfa, and N yield by corn, soybeans, and pasture, although their relative importance varied among different regions.


AMBIO: A Journal of the Human Environment | 2007

Modeling riverine nutrient transport to the Baltic Sea: A large-scale approach

Carl-Magnus Mörth; Christoph Humborg; Hanna M. Eriksson; Åsa Danielsson; Miguel Rodriguez Medina; Stefan Löfgren; Dennis P. Swaney; Lars Rahm

Abstract We developed for the first time a catchment model simulating simultaneously the nutrient land-sea fluxes from all 105 major watersheds within the Baltic Sea drainage area. A consistent modeling approach to all these major watersheds, i.e., a consistent handling of water fluxes (hydrological simulations) and loading functions (emission data), will facilitate a comparison of riverine nutrient transport between Baltic Sea subbasins that differ substantially. Hot spots of riverine emissions, such as from the rivers Vistula, Oder, and Daugava or from the Danish coast, can be easily demonstrated and the comparison between these hot spots, and the relatively unperturbed rivers in the northern catchments show decisionmakers where remedial actions are most effective to improve the environmental state of the Baltic Sea, and, secondly, what percentage reduction of riverine nutrient loads is possible. The relative difference between measured and simulated fluxes during the validation period was generally small. The cumulative deviation (i.e., relative bias) [Σ(Simulated − Measured)/ΣMeasured × 100 (%)] from monitored water and nutrient fluxes amounted to +8.2% for runoff, to −2.4% for dissolved inorganic nitrogen, to +5.1% for total nitrogen, to +13% for dissolved inorganic phosphorus and to +19% for total phosphorus. Moreover, the model suggests that point sources for total phosphorus compiled by existing pollution load compilations are underestimated because of inconsistencies in calculating effluent loads from municipalities.


Global Biogeochemical Cycles | 2006

Modeling hydrology and silicon‐carbon interactions in taiga and tundra biomes from a landscape perspective: Implications for global warming feedbacks

Erik Smedberg; Carl-Magnus Mörth; Dennis P. Swaney; Christoph Humborg

Modelling hydrology and silicon-carbon interactions in taiga and tundra biomes from a landscape perspective : Implications for global warming feedbacks

Collaboration


Dive into the Dennis P. Swaney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Weinstein

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wangshou Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annika Svanbäck

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge