Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roxanne Marino is active.

Publication


Featured researches published by Roxanne Marino.


Biogeochemistry | 2002

Towards an ecological understanding of biological nitrogen fixation

Peter M. Vitousek; Ken Cassman; Cory C. Cleveland; Tim E Crews; Christopher B. Field; Nancy B. Grimm; Robert W. Howarth; Roxanne Marino; Luiz A. Martinelli; Edward B. Rastetter; Janet I. Sprent

N limitation to primary production and other ecosystem processes is widespread. To understand the causes and distribution of N limitation, we must understand the controls of biological N fixation. The physiology of this process is reasonably well characterized, but our understanding of ecological controls is sparse, except in a few cultivated ecosystems. We review information on the ecological controls of N fixation in free-living cyanobacteria, vascular plant symbioses, and heterotrophic bacteria, with a view toward developing improved conceptual and simulation models of ecological controls of biological N fixation.A model (Howarth et al. 1999) of cyanobacterial fixation in lakes (where N fixation generally increases substantially when N:P ratios are low) versus estuaries (where planktonic N fixation is rare regardless of N:P ratios) concludes that an interaction of trace-element limitation and zooplankton grazing could constrain cyanobacteria in estuaries and so sustain N limitation. Similarly. a model of symbiotic N fixation on land (Vitousek & Field 1999) suggests that shade intolerance, P limitation, and grazing on N-rich plant tissues could suppress symbiotic N fixers in late-successional forest ecosystems. This congruence of results raises the question – why do late-successional tropical forests often contain many potentially N-fixing canopy legumes, while N fixers are absent from most late-successional temperate and boreal forests? We suggest that relatively high N availability in lowland tropical forests permits legumes to maintain an N-demanding lifestyle (McKey 1994) without always being required to pay the costs of fixing N.Overall, both the few simulation models and the more-numerous conceptual models of ecological controls of biological N fixation suggest that there are substantial common features across N-fixing organisms and ecosystems. Despite the many groups of organisms capable of fixing N, and the very different ecosystems in which the process is important, we suggest that these common controls provide a foundation for the development of regional and global models that incorporate ecological controls of biological N fixation.


Frontiers in Ecology and the Environment | 2011

Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems

Robert W. Howarth; Francis Chan; Daniel J. Conley; Josette Garnier; Scott C. Doney; Roxanne Marino; Gilles Billen

Nutrient fluxes to coastal areas have risen in recent decades, leading to widespread hypoxia and other ecological damage, particularly from nitrogen (N). Several factors make N more limiting in estuaries and coastal waters than in lakes: desorption (release) of phosphorus (P) bound to clay as salinity increases, lack of planktonic N fixation in most coastal ecosystems, and flux of relatively P-rich, N-poor waters from coastal oceans into estuaries. During eutrophication, biogeochemical feedbacks further increase the supply of N and P, but decrease availability of silica - conditions that can favor the formation and persistence of harmful algal blooms. Given sufficient N inputs, estuaries and coastal marine ecosystems can be driven to P limitation. This switch contributes to greater far-field N pollution; that is, the N moves further and contributes to eutrophication at greater distances. The physical oceanography (extent of stratification, residence time, and so forth) of coastal systems determines their sensitivity to hypoxia, and recent changes in physics have made some ecosystems more sensitive to hypoxia. Coastal hypoxia contributes to ocean acidification, which harms calcifying organisms such as mollusks and some crustaceans. (Less)


Ecosystems | 2000

Climatic control on eutrophication of the Hudson River estuary.

Robert W. Howarth; Dennis P. Swaney; Thomas J. Butler; Roxanne Marino

ABSTRACT Eutrophication is arguably the biggest pollution problem facing estuaries globally, with extensive consequences including anoxic and hypoxic waters, reduced fishery harvests, toxic algal blooms, and loss of biotic diversity. However, estuaries vary greatly in their susceptibility to eutrophication. The Hudson River estuary receives very high levels of nutrient inputs yet in the past has shown relatively low rates of phytoplankton productivity and is generally considered to be only moderately susceptible to eutrophication. Here, we show that eutrophication and primary production in the Hudson estuary can increase dramatically in response to climatic variation and lowered freshwater discharge from the watershed. During dry summer periods in 1995 and 1997, rates of primary production were substantially higher than those measured during the 1970s, when freshwater discharge tended to be high. In the Hudson, low freshwater discharge increases waterresidence times and stratification and deepens the photic zone, all of which (alone or in combination) could lead to the observed increase in primary production. Our data, along with the prediction of most climate change models that freshwater discharge will be lower in the future during the summer in the northeastern US, suggest that the Hudson will become more susceptible to eutrophication. Eutrophication in an estuary is a complex process, and climate change is likely to affect each estuary differently due to interactions with nutrient loadings and physical circulation. Hence, it is essential to consider the effects of climate change in the context of individual estuarine functioning to successfully manage eutrophication in the future.


Frontiers in Ecology and the Environment | 2012

Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate

Robert W. Howarth; Dennis P. Swaney; Gilles Billen; Josette Garnier; Bongghi Hong; Christoph Humborg; Penny J Johnes; Carl-Magnus Mörth; Roxanne Marino

The flux of nitrogen (N) to coastal marine ecosystems is strongly correlated with the “net anthropogenic nitrogen inputs” (NANI) to the landscape across 154 watersheds, ranging in size from 16 km2 to 279 000 km2, in the US and Europe. When NANI values are greater than 1070 kg N km−2 yr−1, an average of 25% of the NANI is exported from those watersheds in rivers. Our analysis suggests a possible threshold at lower NANI levels, with a smaller fraction exported when NANI values are below 1070 kg N km−2 yr−1. Synthetic fertilizer is the largest component of NANI in many watersheds, but other inputs also contribute substantially to the N fluxes; in some regions, atmospheric deposition of N is the major component. The flux of N to coastal areas is controlled in part by climate, and a higher percentage of NANI is exported in rivers, from watersheds that have higher freshwater discharge.


Estuaries | 1993

Atmospheric oxygen exchange in the Hudson River: Dome measurements and comparison with other natural waters

Roxanne Marino; Robert W. Howarth

The measurement of metabolism using diel free-water oxygen techniques requires the estimation of atmospheric oxygen exchanges. We measured such exchange on nine different occasions in the freshwater, tidally-influenced Hudson River estuary using a floating dome technique. We also analyzed previously published data on the exchange of a variety of gases measured in lakes, estuaries, and open ocean waters using a wide variety of techniques. Data were expressed as a “transfer velocity” and normalized to an exchange of oxygen at 20°C. Considered together, these data indicate a significant predictive relationship when the natural log of transfer velocity is regressed with measured wind speed (r2 = 0.55; p = 0.0001). The influence of wind was particularly pronounced in estuaries and in lakes. Data from open-ocean waters showed much less influence of wind, probably because surface turbulence in these deeper waters can be temporally and spatially decoupled from wind. Our Hudson data agreed well with data collected in other systems. In general, data from estuaries—including the Hudson—indicated slightly higher transfer velocities at any given wind speed than do data from lakes (although this difference was less pronounced for our Hudson data than for other estuaries). The difference may result from some interaction of wind and tidal currents, or it may reflect a bias in the dome method of measurements; all of the estuarine data were collected using the dome approach, while the majority of the lake data were determined using an added tracer. If the dome method actually gives a biased, high estimate of oxygen flux, this is in contradiction to previous criticisms of this method that domes may underestimate fluxes by blocking wind at the water surface. We have used the regression of the natural log of transfer velocity versus wind speed developed here to estimate respiration in the Hudson estuary from diel changes in dissolved oxygen. To allow for possible biases in technique and for measurement error, we estimated 95% confidence limits around the regression. Estimates of respiration in the Hudson determined using the upper and lower 95% confidence limits are 30% higher and 12% lower than that determined when using the best-fit regression. An independently-constrained carbon budget for the tidally-influenced, freshwater Hudson River estuary indicates that respiration rates cannot be much higher than our mean estimate as calculated using the linear regression of the gas transfer and wind data to correct for air-water oxygen exchange. Gas transfer in natural systems is difficult to measure and is controlled by many interrelated physical factors. In the absence of extensive, system-specific field studies, the regression presented here should be useful in estimating atmospheric oxygen exchange in other estuarine or riverine ecosystems which are relatively deep and wide.


Biogeochemistry | 1994

Variable rates of phosphate uptake by shallow marine carbonate sediments: mechanisms and ecological significance

Karen J. McGlathery; Roxanne Marino; Robert W. Howarth

We determined phosphate uptake by calcareous sediments at two locations within a shallow lagoon in Bermuda that varied in trophic status, with one site being mesotrophic and the other being more eutrophic. Phosphate adsorption over a six hour period was significantly faster in sediments from the mesotrophic site. Uptake at both sites was significantly less than that reported for a similar experiment on calcareous sediments in an oligotrophic lagoon in the Bahamas. The difference in phosphorus adsorption between our sites did not appear to be related to sediment characteristics often cited as important, such as differences in surface area (as inferred from grain size distributions), total organic matter content, or iron content. However, the sediment total phosphorus contents were inversely related to phosphorus uptake at our sites in Bermuda, and at the previously studied Bahamas site.We hypothesize that phosphate uptake in these calcareous sediments is a multi-step process, as previously described for fluvial sediments or pure calcium carbonate solids, with rapid initial surface chemisorption followed by a slower incorporation into the carbonate solid-phase matrix. Accordingly, sediments already richer in solid phase phosphorus take up additional phosphate more slowly since the slower incorporation of surface-adsorbed phosphate into the carbonate matrix limits the rate of renewal of surface-reactive adsorption sites.Although carbonate sediments are a sink for phosphate, and thereby reduce the availability of phosphorus for benthic macrophytes and phytoplankton in the shallow overlying water, phosphate uptake by these sediments appears to decrease along a gradient from oligotrophic to eutrophic sites. If our result is general, it implies a positive feedback in phosphorus availability, with a proportionately greater percentage of phosphorus loading being biologically available longer as phosphorus loading increases. This pattern is supported by the significantly higher tissue phosphorus content of the seagrass,Thalassia testudinum, collected from the eutrophic inner bay site. Over time, this effect may tend to cause a shift from phosphorus to nitrogen limitation in some calcareous marine environments.


Biogeochemistry | 1992

Ecosystem respiration and organic carbon processing in a large, tidally influenced river: the Hudson River

Robert W. Howarth; Roxanne Marino; Robert H. Garritt; Diane Sherman

We estimated whole-ecosystem rates of respiration over a 40-km stretch of the tidally influenced freshwater Hudson River every 2 to 3 weeks from May through November. We measured in situ concentrations of oxygen over depth at dusk and dawn at 10 stations spaced over this interval. The use of multiple stations allowed for the consideration of the influence of tidal advection of water masses. Respiration was estimated from the decrease in oxygen overnight with a correction for diffusive exchange of oxygen with the atmosphere. We estimated this flux of oxygen to or from the atmosphere using the measured oxygen gradient and a transfer velocity model which is a function of wind velocity.Integration of the data for the period of May through November yields an estimate of whole-ecosystem respiration of 591 g C m−2 (S.E. = 66). That the standard error of this estimate is relatively low (11% of the estimate) indicates that the use of multiple stations adequately deals with error introduced through the advection of water between stations. The logarithm of average daily respiration rate was correlated with average daily temperature (p = 0.007;r2 = 0.62). We used this temperature-respiration relationship to derive an estimate of the annual respiration rate of 755 g C m−2 yr−1 (S.E. = 72). This estimate is moderately sensitive to the estimated flux of oxygen between the atmosphere and water; using the lower and upper 95% confidence limits of our model relating the transfer velocity of oxygen to wind speed gives a range of annual respiration estimates from 665 g C m−2 yr−1 to 984 g C m−2 yr−1.The river is strongly heterotrophic, with most respiration driven by allochthonous inputs of organic matter from terrestrial ecosystems. The majority of the allochthonous inputs to the river (over 60%) are apparently metabolized within the river. Any change in allochthonous inputs due to changes in land use or climate patterns would be expected to alter the oxygen dynamics and energy flow within this tidally influenced river.


Hydrobiologia | 2003

Sulfate inhibition of molybdenum-dependent nitrogen fixation by planktonic cyanobacteria under seawater conditions: a non-reversible effect

Roxanne Marino; Robert W. Howarth; Francis Chan; Jonathan J. Cole; Gene E. Likens

The trace element molybdenum is a central component of several enzymes essential to bacterial nitrogen metabolism, including nitrogen fixation. Despite reasonably high dissolved concentrations (for a trace metal) of molybdenum in seawater, evidence suggests that its biological reactivity and availability are lower in seawater than in freshwater. We have previously argued that this difference is related to an inhibition in the uptake of molybdate (the thermodynamically stable form of molybdenum in oxic natural waters) by sulfate, a stereochemically similar ion. Low molybdenum availability may slow the growth rate of nitrogen-fixing cyanobacteria, and in combination with an ecological control such as grazing by zooplankton, keep fixation rates very low in even strongly nitrogen-limited coastal marine ecosystems. Here we present results from a seawater mesocosm experiment where the molybdenum concentration was increased 10-fold under highly nitrogen-limited conditions. The observed effects on nitrogen-fixing cyanobacterial abundance and nitrogen-fixation inputs were much smaller than expected. A follow-up experiment with sulfate and molybdenum additions to freshwater microcosms showed that sulfate (at seawater concentrations) greatly reduced nitrogen fixation by cyanobacteria and that additions of molybdenum to the levels present in the seawater mesocosm experiment only slightly reversed this effect. In light of these results, we re-evaluated our previous work on the uptake of radio-labeled molybdenum by lake plankton and by cultures of heterocystic cyanobacteria. Our new interpretation indicates that sulfate at saline estuarine levels (>8–10 mM) up to seawater (28 mM) concentrations does inhibit molybdenum assimilation. However, the maximum molybdenum uptake rate (Vmax) was a function of the sulfate concentration, with lower Vmax values at higher sulfate levels. This indicates that this inhibition is not fully reversed at some saturating level of molybdenum, as assumed in a simple competitive inhibition model. A multi-enzyme, mixed kinetics model with two or more uptake enzyme systems activated in response to the environmental sulfate and molybdate conditions may better explain the repressive effect of sulfate on Mo-mediated processes such as nitrogen fixation.


Biogeochemistry | 1986

Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle

Jonathan J. Cole; Robert W. Howarth; Scott Nolan; Roxanne Marino

Molybdenum is required for both dinitrogen fixation and nitrate assimilation. In oxic waters the primary form of molybdenum is the molybdate anion. Using radioactive [99Mol Na2MoO4, we have shown that the transport of molybdate by a natural assemblage of freshwater phytoplankton is light-dependent and follows typical saturation kinetics. The molybdate anion is strikingly similar to sulfate and we present data to show that sulfate is a competitive inhibitor of molybdate assimilation by planktonic algae and bacteria. The ability of freshwater phytoplankton to transport molybdate is inhibited at sulfate concentrations as low as 5% of those in seawater and at sulfate: molybdate ratios as low as 50 to 100 times lower than those found in seawater, Similarly, the growth of both a freshwater bacterium and a saltwater diatom was inhibited at sulfate: molybdate ratios lower than those in seawater.The ratio of sulfate to molybdate is 10 to 100 times greater in seawater than in fresh water. This unfavorable sulfate: molybdate ratio may make molybdate less biologically available in the sea. The sulfate: molybdate ratio may explain, in part, the low rates of nitrogen fixation in N-limited salt waters.


Ecosystems | 2002

Ecological and biogeochemical interactions constrain planktonic nitrogen fixation in estuaries

Roxanne Marino; Francis Chan; Robert W. Howarth; Michael L. Pace; Gene E. Likens

AbstractMany types of ecosystems have little or no N2 fixation even when nitrogen (N) is strongly limiting to primary production. Estuaries generally fit this pattern. In contrast to lakes, where blooms of N2-fixing cyanobacteria are often sufficient to alleviate N deficits relative to phosphorus (P) availability, planktonic N2 fixation is unimportant in most N-limited estuaries. Heterocystic cyanobacteria capable of N2 fixation are seldom observed in estuaries where the salinity exceeds 8–10 ppt, and blooms have never been reported in such estuaries in North America. However, we provided conditions in estuarine mesocosms (salinity over 27 ppt) that allowed heterocystic cyanobacteria to grow and fix N2 when zooplankton populations were kept low. Grazing by macrozooplankton at population densities encountered in estuaries strongly suppressed cyanobacterial populations and N2 fixation. The cyanobacteria grew more slowly than observed in fresh waters, at least in part due to the inhibitory effect of sulfate (SO42−), and this slow rate of growth increased their vulnerability to grazing. We conclude that interactions between physiological (bottom–up) factors that slow the growth rate of cyanobacteria and ecological (top–down) factors such as grazing are likely to be important regulators excluding planktonic N2 fixation from most Temperate Zone estuaries.

Collaboration


Dive into the Roxanne Marino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis Chan

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Berg

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Anne E. Giblin

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Eric A. Davidson

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar

Gene E. Likens

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge