Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deok Hyun Moon is active.

Publication


Featured researches published by Deok Hyun Moon.


Chemosphere | 2014

Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions.

Mahtab Ahmad; Sang Soo Lee; Jung Eun Lim; Sung-Eun Lee; Ju Sik Cho; Deok Hyun Moon; Yohey Hashimoto; Yong Sik Ok

Mussel shell (MS), cow bone (CB) and biochar (BC) were selected to immobilize metals in an army firing range soil. Amendments were applied at 5% (wt) and their efficacies were determined after 175 d. For metal phytoavailability test, maize (Zea mays L.) plants were cultivated for 3weeks. Results showed that all amendments decreased the exchangeable Pb by up to 99% in planted/unplanted soils. Contrarily, exchangeable Sb were increased in the MS- and CB-amended soils. The rise in soil pH (~1 unit) by the amendments affected Pb and Sb mobility in soils. Bioavailability of Pb to maize was reduced by up to 71% in the amended soils. The Sb uptake to maize was decreased by up to 53.44% in the BC-amended soil. Sequential chemical extractions showed the transformation of easily available Pb to stable residual form with the amendment treatments. Scanning electron microscopic elemental dot mapping revealed the Pb association with Al and Si in the MS-amended soil and that with P in the CB- and BC-amended soils. Additionally, the extended X-ray absorption fine structure spectroscopic analysis indicated the transformation of organic bound Pb in unamended control soil to relatively more stable Pb-hydroxide (Ksp=10(-17.1)), chloropyromorphite (Ksp=10(-84.4)) and Pb-phosphate (Ksp=10(-23.8)) in soils amended with MS, CB and BC, respectively. Application of BC was the best in decreasing the phytoavailability of Pb and Sb in the studied army firing range soil.


Journal of Hazardous Materials | 2012

Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach.

Mahtab Ahmad; Yohey Hashimoto; Deok Hyun Moon; Sang Soo Lee; Yong Sik Ok

This study evaluated the effectiveness of eggshell and calcined eggshell on lead (Pb) immobilization in a shooting range soil. Destructive and non-destructive analytical techniques were employed to determine the mechanism of Pb immobilization. The 5% additions of eggshell and calcined eggshell significantly decreased the TCLP-Pb concentration by 68.8% due mainly to increasing soil pH. Eggshell and calcined-eggshell amendments decreased the exchangeable Pb fraction to ≈ 1% of the total Pb in the soil, while the carbonate-associated Pb fraction was increased to 40.0-47.1% at >15% application rates. The thermodynamic modeling on Pb speciation in the soil solution predicted the precipitation of Pb-hydroxide [Pb(OH)(2)] in soils amended with eggshell and calcined eggshell. The SEM-EDS, XAFS and elemental dot mapping revealed that Pb in soil amended with calcined eggshell was associated with Si and Ca, and may be immobilized by entrapping into calcium-silicate-hydrate. Comparatively, in the soil amended with eggshell, Pb was immobilized via formation of Pb-hydroxide or lanarkite [Pb(2)O(SO(4))]. Applications of amendments increased activities of alkaline phosphatase up to 3.7 times greater than in the control soil. The use of eggshell amendments may have potential as an integrated remediation strategy that enables Pb immobilization and soil biological restoration in shooting range soils.


Environmental Monitoring and Assessment | 2011

Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea.

Yong Sik Ok; Sung-Chul Kim; Kwon-Rae Kim; Sang Soo Lee; Deok Hyun Moon; Kyoung Jae Lim; Jwa-Kyung Sung; Seung-Oh Hur; Jae E. Yang

Many studies have been recently reported that veterinary antibiotics released into the environment have a detrimental effect on humans such as the occurrence of antibiotic-resistant bacteria. However, only limited information is available regarding to the release of antibiotics in environmental compartments in Korea. Objectives of this study were to evaluate the concentrations of antibiotics in water, sediment, and soil adjacent to a composting facility in Korea and to determine the dilution effects of antibiotics when released into the environment. Seven antibiotics of chlortetracycline, oxytetracycline, tetracycline, sulfamethazine, sulfamethoxazole, sulfathiazole, and tylosin were evaluated by high-performance liquid chromatography–tandem mass spectrometry following pretreatment using solid-phase extraction to clean the samples. Results showed that the highest concentration of each antibiotic in both aqueous and solid samples was detected from a site adjacent to the composting facility. We also found that the studied water, sediment, and soil samples are contaminated by veterinary antibiotics throughout comparison with studies from other countries. However, relatively lower concentrations of each antibiotic were observed from the rice paddy soil located at the bottom of the water stream. Further research is necessary to continuously monitor the antibiotics release into ecosystems, thereby developing an environmental risk assessment.


Journal of Hazardous Materials | 2008

Assessment of cement kiln dust (CKD) for stabilization/solidification (S/S) of arsenic contaminated soils.

Deok Hyun Moon; Mahmoud Wazne; In-Ho Yoon; Dennis G. Grubb

A stabilization/solidification (S/S) process for arsenic (As) contaminated soils was evaluated using cement kiln dust (CKD). Laboratory-prepared slurries, made of either kaolinite or montmorillonite, and field soils spiked with either As(3+) or As(5+) were prepared and treated with CKD ranging from 10 to 25 wt%. Sodium arsenite and sodium arsenate at 0.1 wt% were used to simulate arsenite (As(3+)) and arsenate (As(5+)) source contamination in soils, respectively. The effectiveness of treatment was evaluated at curing periods of 1- and 7-days based on the toxicity characteristic leaching procedure (TCLP). As-CKD and As-clay-CKD slurries were also spiked at 10 wt% to evaluate As immobilization mechanism using X-ray powder diffraction (XRPD) analyses. Overall, the TCLP results showed that only the As(5+) concentrations in kaolinite amended with 25 wt% CKD after 1 day of curing were less than the TCLP regulatory limit of 5mg/L. Moreover, at 7 days of curing, all As(3+) and As(5+) concentrations obtained from kaolinite soils were less than the TCLP criteria. However, none of the CKD-amended montmorillonite samples satisfied the TCLP-As criteria at 7 days. Only field soil samples amended with 20 wt% CKD complied with the TCLP criteria within 1 day of curing, where the source contamination was As(5+). XRPD and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) results showed that Ca-As-O and NaCaAsO(4).7.5H(2)O were the primary phases responsible for As(3+) and As(5+) immobilization in the soils, respectively.


Journal of Environmental Management | 2010

Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust.

In-Ho Yoon; Deok Hyun Moon; Kyoung-Woong Kim; Keun-Young Lee; Ji-Hoon Lee; Min Gyu Kim

In this study, the mechanism for the stabilization/solidification (S/S) of arsenic (As)-contaminated soils with Portland cement (PC), and cement kiln dust (CKD) using 1 N HCl extraction fluid, X-ray powder diffraction (XRPD), X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS) spectroscopy was investigated. The degree of As immobilization after stabilization was assessed using a 1 N HCl extraction on the basis of the Korean Standard Test (KST). After 1 day of curing with 30 wt% PC and 7 days of curing with 50 wt% CKD, the concentration of As leached from the amended soils was less than the Korean countermeasure standard (3 mg L(-1)). The As concentrations in the leachate treated with PC and CKD were significantly decreased at pH > 3, indicating that pH had a prevailing influence on As mobility. XRPD results indicated that calcium arsenite (Ca-As-O) and sodium calcium arsenate hydrate (NaCaAsO(4).7.5H(2)O) were present in the PC- and CKD-treated slurries as the key phases responsible for As(III) and As(V) immobilization, respectively. The XANES spectroscopy confirmed that the As(III) and As(V) oxidation states of the PC and CKD slurry samples were consistent with the speciated forms in the crystals identified by XRPD. EXAFS spectroscopy showed As-Ca bonding in the As(III)-PC and As(III)-CKD slurries. The main mechanism for the immobilization of As-contaminated soils with PC and CKD was strongly associated with the bonding between As(III) or As(V) and Ca.


Environmental Earth Sciences | 2012

An assessment of the utilization of waste resources for the immobilization of Pb and Cu in the soil from a Korean military shooting range

Mahtab Ahmad; Deok Hyun Moon; Kyoung Jae Lim; Christopher L. Shope; Sang Soo Lee; Adel R.A. Usman; Kwon-Rae Kim; Jeong-Hun Park; Seung-Oh Hur; Jae E. Yang; Yong Sik Ok

Military shooting range soils contaminated by heavy metals have been subjected to remediation efforts to alleviate the detrimental effects of exposure on humans and the surrounding environment. Waste materials can be used as cost-effective soil amendments to immobilize heavy metals in contaminated soils. In this study, naturally occurring lime-based waste materials including egg shells, oyster shells, and mussel shells were assessed for their effectiveness toward heavy metal immobilization in military shooting range soil in Korea. Soil was treated in batch leaching experiments with 0, 2.5, 5, 10, and 15% of each lime-based waste material. The results showed that the lime-based waste materials effectively reduced water-soluble Pb at an application rate of 2.5% by weight of the soil. Increase in soil pH from 6.6 to 8.0 was considered to be the main chemistry of Pb immobilization, which was supported by the formation of insoluble Pb species at high pH values as confirmed by the visual MINTEQ thermodynamic model. In contrary, water-soluble Cu was increased in the lime-based waste material-treated soils when compared to the untreated soil. This was likely attributed to the formation of soluble Cu–DOC (dissolved organic carbon) complexes as all lime-based waste materials applied increased DOC contents in the soil. Therefore, care must be taken in selecting the appropriate amendment for immobilizing metals in shooting range soils.


Journal of Hazardous Materials | 2009

Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate

Santhi Chandra Jagupilla; Deok Hyun Moon; Mahmoud Wazne; Christos Christodoulatos; Min Gyu Kim

A bench-scale treatability study was conducted to assess the effects of particle size and acid addition on the remediation of chromite ore processing residue (COPR) using ferrous sulfate. The remediation scheme entailed the chemical reduction of hexavalent chromium [Cr(VI)] and the mitigation of swell potential. Leaching tests and the EQ3/6 geochemical model were used to estimate the acid dosage required to destabilize Cr(VI)-bearing and swell-causing minerals. The model predicted greater acid dosage than that estimated from the batch leaching tests. This indicated that mass transfer limitation may be playing a significant role in impeding the dissolution of COPR minerals following acid addition and hence hindering the remediation of COPR. Cr(VI) concentrations determined by alkaline digestion for the treated samples were less than the current NJDEP standard. However, Cr(VI) concentrations measured by X-ray absorption near edge structure (XANES) were greater than those measured by alkaline digestion. Greater Cr(VI) percentages were reduced for acid pretreated and also for smaller particle size COPR samples. Upon treatment, brownmillerite content was greatly reduced for the acid pretreated samples. Conversely, ettringite, a swell-causing mineral, was not observed in the treated COPR.


Journal of Hazardous Materials | 2009

Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust.

Deok Hyun Moon; Dennis G. Grubb; Trevor L. Reilly

Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO(3)(2-)) and selenate (SeO(4)(2-)). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration <10mg/L. Several treatments satisfied the USEPA TCLP best demonstrated available technology (BDAT) limits (5.7 mg/L) for selenium at pozzolan doses up to 10 times less than the treatments that established the BDAT. Neither pozzolan was capable of reducing the TCLP-Se(VI) concentrations below 25mg/L. Se-soil-cement slurries aged for 30 days enabled the identification of Se precipitates by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). XRD and SEM-EDX analyses of the Se(IV)- and Se(VI)-soil-cement slurries revealed that the key selenium bearing phases for all three soil-cement slurries were calcium selenite hydrate (CaSeO(3).H(2)O) and selenate substituted ettringite (Ca(6)Al(2)(SeO(4))(3)(OH)(12).26H(2)O), respectively.


Journal of Environmental Quality | 2008

Leaching mechanisms of Cr(VI) from chromite ore processing residue.

Mahmoud Wazne; Santhi Chandra Jagupilla; Deok Hyun Moon; Christos Christodoulatos; Agamemnon Koutsospyros

Batch leaching tests, qualitative and quantitative x-ray powder diffraction (XRPD) analyses, and geochemical modeling were used to investigate the leaching mechanisms of Cr(VI) from chromite ore processing residue (COPR) samples obtained from an urban area in Hudson County, New Jersey. The pH of the leaching solutions was adjusted to cover a wide range between 1 and 12.5. The concentration levels for total chromium (Cr) and Cr(VI) in the leaching solutions were virtually identical for pH values >5. For pH values <5, the concentration of total Cr exceeded that of Cr(VI) with the difference between the two attributed to Cr(III). Geochemical modeling results indicated that the solubility of Cr(VI) is controlled by Cr(VI)-hydrocalumite and Cr(VI)-ettringite at pH >10.5 and by adsorption at pH <8. However, experimental results suggested that Cr(VI) solubility is controlled partially by Cr(VI)-hydrocalumite at pH >10.5 and by hydrotalcites at pH >8 in addition to adsorption of anionic chromate species onto inherently present metal oxides and hydroxides at pH <8. As pH decreased to <10, most of the Cr(VI) bearing minerals become unstable and their dissolution contributes to the increase in Cr(VI) concentration in the leachate solution. At low pH ( <1.5), Cr(III) solid phases and the oxides responsible for Cr(VI) adsorption dissolve and release Cr(III) and Cr(VI) into solution.


Science of The Total Environment | 2008

Particle size and pH effects on remediation of chromite ore processing residue using calcium polysulfide (CaS5)

Deok Hyun Moon; Mahmoud Wazne; Santhi Chandra Jagupilla; Christos Christodoulatos; Min Gyu Kim; Agamemnon Koutsospyros

A long-term bench scale treatability study was performed to assess the ability to remediate chromite ore processing residue (COPR) using calcium polysulfide (CaS(5)). COPR materials were characterized with respect to particle size, pH, curing period and mineralogy. A stoichiometric ratio of sulfide species to hexavalent chromium (Cr(6+)) of 2 was used for the long-term treatment of COPR. The effectiveness of CaS(5) treatment was assessed using the toxicity characteristic leaching procedure (TCLP), alkaline digestion, and X-ray absorption near edge structure (XANES) analyses. The formation of ettringite, known as a heaving agent, was investigated following the treatment of CaS(5), using X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM) along with an energy dispersive X-ray spectroscopy (EDX). Overall, after a curing period of 18 months, the TCLP total chromium (Cr) and alkaline digestion (Cr(6+)) results obtained from the treatability study showed that the concentrations were lower than 5 mg L(-1) and 9 mg kg(-1), respectively. However, XANES results obtained from samples cured for 18 months showed that all of the treated samples had higher Cr(6+) concentrations than shown using alkaline digestion. The lowest XANES Cr(6+) concentration of 610.2 mg kg(-1) was obtained from the sample with a particle size less than 0.075 mm and a pH value of 9. Particle size reduction prior to the addition of the reductant, along with pH reduction was found to be strongly associated with the treatment performance. Ettringite formation, due to pH increase over time in the samples, where the initial pH was adjusted to 9, was verified by XRPD and SEM-EDX analyses, indicating that a pH less than 9 should be maintained to avoid ettringite formation.

Collaboration


Dive into the Deok Hyun Moon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimitris Dermatas

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

Mahmoud Wazne

Lebanese American University

View shared research outputs
Top Co-Authors

Avatar

Jeong-Hun Park

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Sang Soo Lee

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Maria Chrysochoou

Stevens Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christos Christodoulatos

Stevens Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge