Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek E. Moulton is active.

Publication


Featured researches published by Derek E. Moulton.


Journal of Applied Physiology | 2011

Possible role of differential growth in airway wall remodeling in asthma

Derek E. Moulton; Alain Goriely

Airway remodeling in patients with chronic asthma is characterized by a thickening of the airway walls. It has been demonstrated in previous theoretical models that this change in thickness can have an important mechanical effect on the properties of the wall, in particular on the phenomenon of mucosal folding induced by smooth muscle contraction. In this paper, we present a model for mucosal folding of the airway in the context of growth. The airway is modeled as a bilayered cylindrical tube, with both geometric and material nonlinearities accounted for via the theory of finite elasticity. Growth is incorporated into the model through the theory of morphoelasticity. We explore a range of growth possibilities, allowing for anisotropic growth as well as different growth rates in each layer. Such nonuniform growth, referred to as differential growth, can change the properties of the material beyond geometrical changes through the generation of residual stresses. We demonstrate that differential growth can have a dramatic impact on mucosal folding, in particular on the critical pressure needed to induce folding, the buckling pattern, as well as airway narrowing. We conclude that growth may be an important component in airway remodeling.


Cell | 2016

Morphomechanical Innovation Drives Explosive Seed Dispersal

Hugo Hofhuis; Derek E. Moulton; Thomas Lessinnes; Anne-Lise Routier-Kierzkowska; Richard J. Bomphrey; Gabriella Mosca; Hagen Peter Reinhardt; Penny Sarchet; Xiangchao Gan; Miltos Tsiantis; Yiannis Ventikos; Simon M. Walker; Alain Goriely; Richard S. Smith; Angela Hay

Summary How mechanical and biological processes are coordinated across cells, tissues, and organs to produce complex traits is a key question in biology. Cardamine hirsuta, a relative of Arabidopsis thaliana, uses an explosive mechanism to disperse its seeds. We show that this trait evolved through morphomechanical innovations at different spatial scales. At the organ scale, tension within the fruit wall generates the elastic energy required for explosion. This tension is produced by differential contraction of fruit wall tissues through an active mechanism involving turgor pressure, cell geometry, and wall properties of the epidermis. Explosive release of this tension is controlled at the cellular scale by asymmetric lignin deposition within endocarp b cells—a striking pattern that is strictly associated with explosive pod shatter across the Brassicaceae plant family. By bridging these different scales, we present an integrated mechanism for explosive seed dispersal that links evolutionary novelty with complex trait innovation. Video Abstract


EPL | 2010

Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues

Alain Goriely; Derek E. Moulton; R. Vandiver

Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence of applied loads and could induce cavity opening. Here, we demonstrate the possibility of spontaneous growth-induced cavitation in elastic materials and consider the implications of this phenomenon to biological tissues and in particular to the problem of schizogenous aerenchyma formation.


Journal of Theoretical Biology | 2012

Mechanical growth and morphogenesis of seashells

Derek E. Moulton; Alain Goriely; Régis Chirat

Seashells grow through the local deposition of mass along the aperture. Many mathematical descriptions of the shapes of shells have been provided over the years, and the basic logarithmic coiling seen in mollusks can be simulated with few parameters. However, the developmental mechanisms underlying shell coiling are largely not understood and the ubiquitous presence of ornamentation such as ribs, tubercles, or spines presents yet another level of difficulty. Here we develop a general model for shell growth based entirely on the local geometry and mechanics of the aperture and mantle. This local description enables us to efficiently describe both arbitrary growth velocities and the evolution of the shell aperture itself. We demonstrate how most shells can be simulated within this framework. We then turn to the mechanics underlying the shell morphogenesis, and develop models for the evolution of the aperture. We demonstrate that the elastic response of the mantle during shell deposition provides a natural mechanism for the formation of three-dimensional ornamentation in shells.


Nature Physics | 2017

Critical slowing down in purely elastic ‘snap-through’ instabilities

Michael Gomez; Derek E. Moulton; Dominic Vella

Critical phenomena are well understood in a wide range of physical systems. The dynamics of snap-through instabilities, a widespread phenomenon in their own right, are now shown to display critical scaling properties.


Journal of Colloid and Interface Science | 2008

Theory and experiment for soap-film bridge in an electric field

Derek E. Moulton; John A. Pelesko

Surface tension and electrostatic forces dominate the behavior of many micro and nano scale systems. Understanding interactions between these forces may therefore be of great utility in a number of engineering systems. We investigate one such interaction by subjecting an elastic membrane suspended between two parallel rings to an axially symmetric electric field. A model is formulated and analyzed and the effect of the field is characterized. Experimentally, the system is investigated using a soap-film bridge and a high voltage power source. Experimental observations verify the validity of the theory, in predicting both membrane profile as well as critical device length at which stability is lost.


Ecology Letters | 2017

Predictability in community dynamics

Benjamin Blonder; Derek E. Moulton; Jessica Blois; Brian J. Enquist; Bente J. Graae; Marc Macias-Fauria; Brian J. McGill; Sandra Nogué; Alejandro Ordonez; Brody Sandel; Jens-Christian Svenning

The coupling between community composition and climate change spans a gradient from no lags to strong lags. The no-lag hypothesis is the foundation of many ecophysiological models, correlative species distribution modelling and climate reconstruction approaches. Simple lag hypotheses have become prominent in disequilibrium ecology, proposing that communities track climate change following a fixed function or with a time delay. However, more complex dynamics are possible and may lead to memory effects and alternate unstable states. We develop graphical and analytic methods for assessing these scenarios and show that these dynamics can appear in even simple models. The overall implications are that (1) complex community dynamics may be common and (2) detailed knowledge of past climate change and community states will often be necessary yet sometimes insufficient to make predictions of a communitys future state.


Biomechanics and Modeling in Mechanobiology | 2016

A morphoelastic model for dermal wound closure

L.G. Bowden; Helen M. Byrne; Philip K. Maini; Derek E. Moulton

We develop a model of wound healing in the framework of finite elasticity, focussing our attention on the processes of growth and contraction in the dermal layer of the skin. The dermal tissue is treated as a hyperelastic cylinder that surrounds the wound and is subject to symmetric deformations. By considering the initial recoil that is observed upon the application of a circular wound, we estimate the degree of residual tension in the skin and build an evolution law for mechanosensitive growth of the dermal tissue. Contraction of the wound is governed by a phenomenological law in which radial pressure is prescribed at the wound edge. The model reproduces three main phases of the healing process. Initially, the wound recoils due to residual stress in the surrounding tissue; the wound then heals as a result of contraction and growth; and finally, healing slows as contraction and growth decrease. Over a longer time period, the surrounding tissue remodels, returning to the residually stressed state. We identify the steady state growth profile associated with this remodelled state. The model is then used to predict the outcome of rewounding experiments designed to quantify the amount of stress in the tissue, and also to simulate the application of pressure treatments.


Journal of Theoretical Biology | 2014

An ordinary differential equation model for full thickness wounds and the effects of diabetes

L.G. Bowden; Philip K. Maini; Derek E. Moulton; J.B. Tang; X.T. Wang; P.Y. Liu; Helen M. Byrne

Wound healing is a complex process in which a sequence of interrelated phases contributes to a reduction in wound size. For diabetic patients, many of these processes are compromised, so that wound healing slows down. In this paper we present a simple ordinary differential equation model for wound healing in which attention focusses on the dominant processes that contribute to closure of a full thickness wound. Asymptotic analysis of the resulting model reveals that normal healing occurs in stages: the initial and rapid elastic recoil of the wound is followed by a longer proliferative phase during which growth in the dermis dominates healing. At longer times, fibroblasts exert contractile forces on the dermal tissue, the resulting tension stimulating further dermal tissue growth and enhancing wound closure. By fitting the model to experimental data we find that the major difference between normal and diabetic healing is a marked reduction in the rate of dermal tissue growth for diabetic patients. The model is used to estimate the breakdown of dermal healing into two processes: tissue growth and contraction, the proportions of which provide information about the quality of the healed wound. We show further that increasing dermal tissue growth in the diabetic wound produces closure times similar to those associated with normal healing and we discuss the clinical implications of this hypothesised treatment.


Journal of Mathematical Biology | 2014

Surface growth kinematics via local curve evolution

Derek E. Moulton; Alain Goriely

A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process.

Collaboration


Dive into the Derek E. Moulton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge