Derek Hoiem
University of Illinois at Urbana–Champaign
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Derek Hoiem.
european conference on computer vision | 2012
Nathan Silberman; Derek Hoiem; Pushmeet Kohli; Rob Fergus
We present an approach to interpret the major surfaces, objects, and support relations of an indoor scene from an RGBD image. Most existing work ignores physical interactions or is applied only to tidy rooms and hallways. Our goal is to parse typical, often messy, indoor scenes into floor, walls, supporting surfaces, and object regions, and to recover support relationships. One of our main interests is to better understand how 3D cues can best inform a structured 3D interpretation. We also contribute a novel integer programming formulation to infer physical support relations. We offer a new dataset of 1449 RGBD images, capturing 464 diverse indoor scenes, with detailed annotations. Our experiments demonstrate our ability to infer support relations in complex scenes and verify that our 3D scene cues and inferred support lead to better object segmentation.
computer vision and pattern recognition | 2006
Derek Hoiem; Alexei A. Efros; Martial Hebert
Image understanding requires not only individually estimating elements of the visual world but also capturing the interplay among them. In this paper, we provide a framework for placing local object detection in the context of the overall 3D scene by modeling the interdependence of objects, surface orientations, and camera viewpoint. Most object detection methods consider all scales and locations in the image as equally likely. We show that with probabilistic estimates of 3D geometry, both in terms of surfaces and world coordinates, we can put objects into perspective and model the scale and location variance in the image. Our approach reflects the cyclical nature of the problem by allowing probabilistic object hypotheses to refine geometry and vice-versa. Our framework allows painless substitution of almost any object detector and is easily extended to include other aspects of image understanding. Our results confirm the benefits of our integrated approach.
international conference on computer vision | 2005
Derek Hoiem; Alexei A. Efros; Martial Hebert
Many computer vision algorithms limit their performance by ignoring the underlying 3D geometric structure in the image. We show that we can estimate the coarse geometric properties of a scene by learning appearance-based models of geometric classes, even in cluttered natural scenes. Geometric classes describe the 3D orientation of an image region with respect to the camera. We provide a multiple-hypothesis framework for robustly estimating scene structure from a single image and obtaining confidences for each geometric label. These confidences can then be used to improve the performance of many other applications. We provide a thorough quantitative evaluation of our algorithm on a set of outdoor images and demonstrate its usefulness in two applications: object detection and automatic single-view reconstruction.
International Journal of Computer Vision | 2007
Derek Hoiem; Alexei A. Efros; Martial Hebert
Humans have an amazing ability to instantly grasp the overall 3D structure of a scene—ground orientation, relative positions of major landmarks, etc.—even from a single image. This ability is completely missing in most popular recognition algorithms, which pretend that the world is flat and/or view it through a patch-sized peephole. Yet it seems very likely that having a grasp of this “surface layout” of a scene should be of great assistance for many tasks, including recognition, navigation, and novel view synthesis.In this paper, we take the first step towards constructing the surface layout, a labeling of the image intogeometric classes. Our main insight is to learn appearance-based models of these geometric classes, which coarsely describe the 3D scene orientation of each image region. Our multiple segmentation framework provides robust spatial support, allowing a wide variety of cues (e.g., color, texture, and perspective) to contribute to the confidence in each geometric label. In experiments on a large set of outdoor images, we evaluate the impact of the individual cues and design choices in our algorithm. We further demonstrate the applicability of our method to indoor images, describe potential applications, and discuss extensions to a more complete notion of surface layout.
european conference on computer vision | 2010
Ian Endres; Derek Hoiem
We propose a category-independent method to produce a bag of regions and rank them, such that top-ranked regions are likely to be good segmentations of different objects. Our key objectives are completeness and diversity: every object should have at least one good proposed region, and a diverse set should be top-ranked. Our approach is to generate a set of segmentations by performing graph cuts based on a seed region and a learned affinity function. Then, the regions are ranked using structured learning based on various cues. Our experiments on BSDS and PASCAL VOC 2008 demonstrate our ability to find most objects within a small bag of proposed regions.
computer vision and pattern recognition | 2009
Santosh Kumar Divvala; Derek Hoiem; James Hays; Alexei A. Efros; Martial Hebert
This paper presents an empirical evaluation of the role of context in a contemporary, challenging object detection task - the PASCAL VOC 2008. Previous experiments with context have mostly been done on home-grown datasets, often with non-standard baselines, making it difficult to isolate the contribution of contextual information. In this work, we present our analysis on a standard dataset, using top-performing local appearance detectors as baseline. We evaluate several different sources of context and ways to utilize it. While we employ many contextual cues that have been used before, we also propose a few novel ones including the use of geographic context and a new approach for using object spatial support.
international conference on computer vision | 2009
Varsha Hedau; Derek Hoiem; David A. Forsyth
In this paper, we consider the problem of recovering the spatial layout of indoor scenes from monocular images. The presence of clutter is a major problem for existing single-view 3D reconstruction algorithms, most of which rely on finding the ground-wall boundary. In most rooms, this boundary is partially or entirely occluded. We gain robustness to clutter by modeling the global room space with a parameteric 3D “box” and by iteratively localizing clutter and refitting the box. To fit the box, we introduce a structured learning algorithm that chooses the set of parameters to minimize error, based on global perspective cues. On a dataset of 308 images, we demonstrate the ability of our algorithm to recover spatial layout in cluttered rooms and show several examples of estimated free space.
european conference on computer vision | 2008
Martin Szummer; Pushmeet Kohli; Derek Hoiem
Many computer vision problems are naturally formulated as random fields, specifically MRFs or CRFs. The introduction of graph cuts has enabled efficient and optimal inference in associative random fields, greatly advancing applications such as segmentation, stereo reconstruction and many others. However, while fast inference is now widespread, parameter learning in random fields has remained an intractable problem. This paper shows how to apply fast inference algorithms, in particular graph cuts, to learn parameters of random fields with similar efficiency. We find optimal parameter values under standard regularized objective functions that ensure good generalization. Our algorithm enables learning of many parameters in reasonable time, and we explore further speedup techniques. We also discuss extensions to non-associative and multi-class problems. We evaluate the method on image segmentation and geometry recognition.
international conference on computer graphics and interactive techniques | 2007
Jean Francois Lalonde; Derek Hoiem; Alyosha A Efros; Carsten Rother; John Winn; Antonio Criminisi
We present a system for inserting new objects into existing photographs by querying a vast image-based object library, pre-computed using a publicly available Internet object database. The central goal is to shield the user from all of the arduous tasks typically involved in image compositing. The user is only asked to do two simple things: 1) pick a 3D location in the scene to place a new object; 2) select an object to insert using a hierarchical menu. We pose the problem of object insertion as a data-driven, 3D-based, context-sensitive object retrieval task. Instead of trying to manipulate the object to change its orientation, color distribution, etc. to fit the new image, we simply retrieve an object of a specified class that has all the required properties (camera pose, lighting, resolution, etc) from our large object library. We present new automatic algorithms for improving object segmentation and blending, estimating true 3D object size and orientation, and estimating scene lighting conditions. We also present an intuitive user interface that makes object insertion fast and simple even for the artistically challenged.
european conference on computer vision | 2010
Varsha Hedau; Derek Hoiem; David A. Forsyth
In this paper we show that a geometric representation of an object occurring in indoor scenes, along with rich scene structure can be used to produce a detector for that object in a single image. Using perspective cues from the global scene geometry, we first develop a 3D based object detector. This detector is competitive with an image based detector built using state-of-the-art methods; however, combining the two produces a notably improved detector, because it unifies contextual and geometric information. We then use a probabilistic model that explicitly uses constraints imposed by spatial layout - the locations of walls and floor in the image - to refine the 3D object estimates. We use an existing approach to compute spatial layout [1], and use constraints such as objects are supported by floor and can not stick through the walls. The resulting detector (a) has significantly improved accuracy when compared to the state-of-the-art 2D detectors and (b) gives a 3D interpretation of the location of the object, derived from a 2D image. We evaluate the detector on beds, for which we give extensive quantitative results derived from images of real scenes.