Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexei A. Efros is active.

Publication


Featured researches published by Alexei A. Efros.


international conference on computer vision | 1999

Texture synthesis by non-parametric sampling

Alexei A. Efros; Thomas K. Leung

A non-parametric method for texture synthesis is proposed. The texture synthesis process grows a new image outward from an initial seed, one pixel at a time. A Markov random field model is assumed, and the conditional distribution of a pixel given all its neighbors synthesized so far is estimated by querying the sample image and finding all similar neighborhoods. The degree of randomness is controlled by a single perceptually intuitive parameter. The method aims at preserving as much local structure as possible and produces good results for a wide variety of synthetic and real-world textures.


international conference on computer graphics and interactive techniques | 2001

Image quilting for texture synthesis and transfer

Alexei A. Efros; William T. Freeman

We present a simple image-based method of generating novel visual appearance in which a new image is synthesized by stitching together small patches of existing images. We call this process image quilting. First, we use quilting as a fast and very simple texture synthesis algorithm which produces surprisingly good results for a wide range of textures. Second, we extend the algorithm to perform texture transfer — rendering an object with a texture taken from a different object. More generally, we demonstrate how an image can be re-rendered in the style of a different image. The method works directly on the images and does not require 3D information.


computer vision and pattern recognition | 2006

Putting Objects in Perspective

Derek Hoiem; Alexei A. Efros; Martial Hebert

Image understanding requires not only individually estimating elements of the visual world but also capturing the interplay among them. In this paper, we provide a framework for placing local object detection in the context of the overall 3D scene by modeling the interdependence of objects, surface orientations, and camera viewpoint. Most object detection methods consider all scales and locations in the image as equally likely. We show that with probabilistic estimates of 3D geometry, both in terms of surfaces and world coordinates, we can put objects into perspective and model the scale and location variance in the image. Our approach reflects the cyclical nature of the problem by allowing probabilistic object hypotheses to refine geometry and vice-versa. Our framework allows painless substitution of almost any object detector and is easily extended to include other aspects of image understanding. Our results confirm the benefits of our integrated approach.


computer vision and pattern recognition | 2017

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola; Jun-Yan Zhu; Tinghui Zhou; Alexei A. Efros

We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Moreover, since the release of the pix2pix software associated with this paper, hundreds of twitter users have posted their own artistic experiments using our system. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without handengineering our loss functions either.


computer vision and pattern recognition | 2008

IM2GPS: estimating geographic information from a single image

James Hays; Alexei A. Efros

Estimating geographic information from an image is an excellent, difficult high-level computer vision problem whose time has come. The emergence of vast amounts of geographically-calibrated image data is a great reason for computer vision to start looking globally - on the scale of the entire planet! In this paper, we propose a simple algorithm for estimating a distribution over geographic locations from a single image using a purely data-driven scene matching approach. For this task, we leverage a dataset of over 6 million GPS-tagged images from the Internet. We represent the estimated image location as a probability distribution over the Earthpsilas surface. We quantitatively evaluate our approach in several geolocation tasks and demonstrate encouraging performance (up to 30 times better than chance). We show that geolocation estimates can provide the basis for numerous other image understanding tasks such as population density estimation, land cover estimation or urban/rural classification.


computer vision and pattern recognition | 2006

Using Multiple Segmentations to Discover Objects and their Extent in Image Collections

Bryan C. Russell; William T. Freeman; Alexei A. Efros; Josef Sivic; Andrew Zisserman

Given a large dataset of images, we seek to automatically determine the visually similar object and scene classes together with their image segmentation. To achieve this we combine two ideas: (i) that a set of segmented objects can be partitioned into visual object classes using topic discovery models from statistical text analysis; and (ii) that visual object classes can be used to assess the accuracy of a segmentation. To tie these ideas together we compute multiple segmentations of each image and then: (i) learn the object classes; and (ii) choose the correct segmentations. We demonstrate that such an algorithm succeeds in automatically discovering many familiar objects in a variety of image datasets, including those from Caltech, MSRC and LabelMe.


computer vision and pattern recognition | 2011

Unbiased look at dataset bias

Antonio Torralba; Alexei A. Efros

Datasets are an integral part of contemporary object recognition research. They have been the chief reason for the considerable progress in the field, not just as source of large amounts of training data, but also as means of measuring and comparing performance of competing algorithms. At the same time, datasets have often been blamed for narrowing the focus of object recognition research, reducing it to a single benchmark performance number. Indeed, some datasets, that started out as data capture efforts aimed at representing the visual world, have become closed worlds unto themselves (e.g. the Corel world, the Caltech-101 world, the PASCAL VOC world). With the focus on beating the latest benchmark numbers on the latest dataset, have we perhaps lost sight of the original purpose? The goal of this paper is to take stock of the current state of recognition datasets. We present a comparison study using a set of popular datasets, evaluated based on a number of criteria including: relative data bias, cross-dataset generalization, effects of closed-world assumption, and sample value. The experimental results, some rather surprising, suggest directions that can improve dataset collection as well as algorithm evaluation protocols. But more broadly, the hope is to stimulate discussion in the community regarding this very important, but largely neglected issue.


international conference on computer vision | 2011

Ensemble of exemplar-SVMs for object detection and beyond

Tomasz Malisiewicz; Abhinav Gupta; Alexei A. Efros

This paper proposes a conceptually simple but surprisingly powerful method which combines the effectiveness of a discriminative object detector with the explicit correspondence offered by a nearest-neighbor approach. The method is based on training a separate linear SVM classifier for every exemplar in the training set. Each of these Exemplar-SVMs is thus defined by a single positive instance and millions of negatives. While each detector is quite specific to its exemplar, we empirically observe that an ensemble of such Exemplar-SVMs offers surprisingly good generalization. Our performance on the PASCAL VOC detection task is on par with the much more complex latent part-based model of Felzenszwalb et al., at only a modest computational cost increase. But the central benefit of our approach is that it creates an explicit association between each detection and a single training exemplar. Because most detections show good alignment to their associated exemplar, it is possible to transfer any available exemplar meta-data (segmentation, geometric structure, 3D model, etc.) directly onto the detections, which can then be used as part of overall scene understanding.


international conference on computer vision | 2005

Geometric context from a single image

Derek Hoiem; Alexei A. Efros; Martial Hebert

Many computer vision algorithms limit their performance by ignoring the underlying 3D geometric structure in the image. We show that we can estimate the coarse geometric properties of a scene by learning appearance-based models of geometric classes, even in cluttered natural scenes. Geometric classes describe the 3D orientation of an image region with respect to the camera. We provide a multiple-hypothesis framework for robustly estimating scene structure from a single image and obtaining confidences for each geometric label. These confidences can then be used to improve the performance of many other applications. We provide a thorough quantitative evaluation of our algorithm on a set of outdoor images and demonstrate its usefulness in two applications: object detection and automatic single-view reconstruction.


International Journal of Computer Vision | 2007

Recovering Surface Layout from an Image

Derek Hoiem; Alexei A. Efros; Martial Hebert

Humans have an amazing ability to instantly grasp the overall 3D structure of a scene—ground orientation, relative positions of major landmarks, etc.—even from a single image. This ability is completely missing in most popular recognition algorithms, which pretend that the world is flat and/or view it through a patch-sized peephole. Yet it seems very likely that having a grasp of this “surface layout” of a scene should be of great assistance for many tasks, including recognition, navigation, and novel view synthesis.In this paper, we take the first step towards constructing the surface layout, a labeling of the image intogeometric classes. Our main insight is to learn appearance-based models of these geometric classes, which coarsely describe the 3D scene orientation of each image region. Our multiple segmentation framework provides robust spatial support, allowing a wide variety of cues (e.g., color, texture, and perspective) to contribute to the confidence in each geometric label. In experiments on a large set of outdoor images, we evaluate the impact of the individual cues and design choices in our algorithm. We further demonstrate the applicability of our method to indoor images, describe potential applications, and discuss extensions to a more complete notion of surface layout.

Collaboration


Dive into the Alexei A. Efros's collaboration.

Top Co-Authors

Avatar

Martial Hebert

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Jun-Yan Zhu

University of California

View shared research outputs
Top Co-Authors

Avatar

Abhinav Gupta

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Josef Sivic

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

James Hays

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jitendra Malik

University of California

View shared research outputs
Top Co-Authors

Avatar

Trevor Darrell

University of California

View shared research outputs
Top Co-Authors

Avatar

Phillip Isola

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge