Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek M. Bickhart is active.

Publication


Featured researches published by Derek M. Bickhart.


Proceedings of the National Academy of Sciences of the United States of America | 2009

On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales

Olga Zhaxybayeva; Kristen S. Swithers; Pascal Lapierre; Gregory P. Fournier; Derek M. Bickhart; Robert T. DeBoy; Karen E. Nelson; Camilla L. Nesbø; W. Ford Doolittle; J. Peter Gogarten; Kenneth M. Noll

Since publication of the first Thermotogales genome, Thermotoga maritima strain MSB8, single- and multi-gene analyses have disagreed on the phylogenetic position of this order of Bacteria. Here we present the genome sequences of 4 additional members of the Thermotogales (Tt. petrophila, Tt. lettingae, Thermosipho melanesiensis, and Fervidobacterium nodosum) and a comprehensive comparative analysis including the original T. maritima genome. While ribosomal protein genes strongly place Thermotogales as a sister group to Aquificales, the majority of genes with sufficient phylogenetic signal show affinities to Archaea and Firmicutes, especially Clostridia. Indeed, on the basis of the majority of genes in their genomes (including genes that are also found in Aquificales), Thermotogales should be considered members of the Firmicutes. This result highlights the conflict between the taxonomic goal of assigning every species to a unique position in an inclusive Linnaean hierarchy and the evolutionary goal of understanding phylogenesis in the presence of pervasive horizontal gene transfer (HGT) within prokaryotes. Amino acid compositions of reconstructed ancestral sequences from 423 gene families suggest an origin of this gene pool even more thermophilic than extant members of this order, followed by adaptation to lower growth temperatures within the Thermotogales.


Genome Research | 2012

Copy number variation of individual cattle genomes using next-generation sequencing

Derek M. Bickhart; Yali Hou; Steven G. Schroeder; Can Alkan; Maria Francesca Cardone; Lakshmi K. Matukumalli; Jiuzhou Song; Robert D. Schnabel; Mario Ventura; Jeremy F. Taylor; José Fernando Garcia; Curtis P. Van Tassell; Tad S. Sonstegard; Evan E. Eichler; George E. Liu

Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one Holstein, and one Hereford) and one indicine (Nelore) cattle. Within mapped chromosomal sequence, we identified 1265 CNV regions comprising ~55.6-Mbp sequence--476 of which (~38%) have not previously been reported. We validated this sequence-based CNV call set with array comparative genomic hybridization (aCGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH), achieving a validation rate of 82% and a false positive rate of 8%. We further estimated absolute copy numbers for genomic segments and annotated genes in each individual. Surveys of the top 25 most variable genes revealed that the Nelore individual had the lowest copy numbers in 13 cases (~52%, χ(2) test; P-value <0.05). In contrast, genes related to pathogen- and parasite-resistance, such as CATHL4 and ULBP17, were highly duplicated in the Nelore individual relative to the taurine cattle, while genes involved in lipid transport and metabolism, including APOL3 and FABP2, were highly duplicated in the beef breeds. These CNV regions also harbor genes like BPIFA2A (BSP30A) and WC1, suggesting that some CNVs may be associated with breed-specific differences in adaptation, health, and production traits. By providing the first individualized cattle CNV and segmental duplication maps and genome-wide gene copy number estimates, we enable future CNV studies into highly duplicated regions in the cattle genome.


Nature Genetics | 2017

Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome

Derek M. Bickhart; Benjamin D. Rosen; Sergey Koren; Brian L Sayre; Alex Hastie; Saki Chan; Joyce Lee; Ernest T. Lam; Ivan Liachko; Shawn T Sullivan; Joshua N. Burton; John C Nystrom; Christy M. Kelley; Jana L. Hutchison; Yang Zhou; Jiajie Sun; Alessandra Crisà; F. Abel Ponce de León; John C. Schwartz; John A. Hammond; Geoffrey C. Waldbieser; Steven G. Schroeder; George E. Liu; Maitreya J. Dunham; Jay Shendure; Tad S. Sonstegard; Adam M. Phillippy; Curtis P. Van Tassell; T. P. L. Smith

The decrease in sequencing cost and increased sophistication of assembly algorithms for short-read platforms has resulted in a sharp increase in the number of species with genome assemblies. However, these assemblies are highly fragmented, with many gaps, ambiguities, and errors, impeding downstream applications. We demonstrate current state of the art for de novo assembly using the domestic goat (Capra hircus) based on long reads for contig formation, short reads for consensus validation, and scaffolding by optical and chromatin interaction mapping. These combined technologies produced what is, to our knowledge, the most continuous de novo mammalian assembly to date, with chromosome-length scaffolds and only 649 gaps. Our assembly represents a ∼400-fold improvement in continuity due to properly assembled gaps, compared to the previously published C. hircus assembly, and better resolves repetitive structures longer than 1 kb, representing the largest repeat family and immune gene complex yet produced for an individual of a ruminant species.


BMC Genomics | 2012

Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array

Yali Hou; Derek M. Bickhart; Miranda L Hvinden; Congjun Li; Jiuzhou Song; Didier Boichard; Sébastien Fritz; A. Eggen; Sue DeNise; G.R. Wiggans; Tad S. Sonstegard; Curtis P. Van Tassell; George E. Liu

BackgroundBtau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521 animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases.ResultsIn this study using the high density BovineHD SNP array, we performed high resolution CNV analyses on both Btau_4.0 and UMD3.1 with 674 animals of 27 cattle breeds. We first compared CNV results derived from these two different SNP array platforms on Btau_4.0. With two thirds of the animals shared between studies, on Btau_4.0 we identified 3,346 candidate CNV regions representing 142.7 megabases (~4.70%) of the genome. With a similar total length but 5 times more event counts, the average CNVR length of current Btau_4.0 dataset is significantly shorter than the previous one (42.7 kb vs. 205 kb). Although subsets of these two results overlapped, 64% (91.6 megabases) of current dataset was not present in the previous study. We also performed similar analyses on UMD3.1 using these BovineHD SNP array results. Approximately 50% more and 20% longer CNVs were called on UMD3.1 as compared to those on Btau_4.0. However, a comparable result of CNVRs (3,438 regions with a total length 146.9 megabases) was obtained. We suspect that these results are due to the UMD3.1 assemblys efforts of placing unplaced contigs and removing unmerged alleles. Selected CNVs were further experimentally validated, achieving a 73% PCR validation rate, which is considerably higher than the previous validation rate. About 20-45% of CNV regions overlapped with cattle RefSeq genes and Ensembl genes. Panther and IPA analyses indicated that these genes provide a wide spectrum of biological processes involving immune system, lipid metabolism, cell, organism and system development.ConclusionWe present a comprehensive result of cattle CNVs at a higher resolution and sensitivity. We identified over 3,000 candidate CNV regions on both Btau_4.0 and UMD3.1, further compared current datasets with previous results, and examined the impacts of genome assemblies on CNV calling.


PLOS ONE | 2013

Identification of a Nonsense Mutation in CWC15 Associated with Decreased Reproductive Efficiency in Jersey Cattle

Tad S. Sonstegard; J.B. Cole; P.M. VanRaden; Curtis P. Van Tassell; D.J. Null; Steven G. Schroeder; Derek M. Bickhart; M. C. McClure

With the recent advent of genomic tools for cattle, several recessive conditions affecting fertility have been identified and selected against, such as deficiency of uridine monophosphate synthase, complex vertebral malformation, and brachyspina. The current report refines the location of a recessive haplotype affecting fertility in Jersey cattle using crossover haplotypes, discovers the causative mutation using whole genome sequencing, and examines the gene’s role in embryo loss. In an attempt to identify unknown recessive lethal alleles in the current dairy population, a search using deep Mendelian sampling of 5,288 Jersey cattle was conducted for high-frequency haplotypes that have a deficit of homozygotes at the population level. This search led to the discovery of a putative recessive lethal in Jersey cattle on Bos taurus autosome 15. The haplotype, denoted JH1, was associated with reduced fertility, and further investigation identified one highly-influential Jersey bull as the putative source ancestor. By combining SNP analysis of whole-genome sequences aligned to the JH1 interval and subsequent SNP validation a nonsense mutation in CWC15 was identified as the likely causative mutation underlying the fertility phenotype. No homozygous recessive individuals were found in 749 genotyped animals, whereas all known carriers and carrier haplotypes possessed one copy of the mutant allele. This newly identified lethal has been responsible for a substantial number of spontaneous abortions in Jersey dairy cattle throughout the past half-century. With the mutation identified, selection against the deleterious allele in breeding schemes will aid in reducing the incidence of this defect in the population. These results also show that carrier status can be imputed with high accuracy. Whole-genome resequencing proved to be a powerful strategy to rapidly identify a previously mapped deleterious mutation in a known carrier of a recessive lethal allele.


PLOS Genetics | 2015

Cattle Sex-Specific Recombination and Genetic Control from a Large Pedigree Analysis

Li Ma; Jeffrey R. O'Connell; P.M. VanRaden; Botong Shen; Abinash Padhi; Chuanyu Sun; Derek M. Bickhart; J.B. Cole; D.J. Null; George E. Liu; Yang Da; G.R. Wiggans

Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.


BMC Genomics | 2013

Genomic divergence of zebu and taurine cattle identified through high-density SNP genotyping

Laercio R. Porto-Neto; Tad S. Sonstegard; George E. Liu; Derek M. Bickhart; Marcos V. G. B. da Silva; Marco Antonio Machado; Yuri T. Utsunomiya; José Fernando Garcia; Cedric Gondro; Curtis P. Van Tassell

BackgroundNatural selection has molded evolution across all taxa. At an arguable date of around 330,000 years ago there were already at least two different types of cattle that became ancestors of nearly all modern cattle, the Bos taurus taurus more adapted to temperate climates and the tropically adapted Bos taurus indicus. After domestication, human selection exponentially intensified these differences. To better understand the genetic differences between these subspecies and detect genomic regions potentially under divergent selection, animals from the International Bovine HapMap Experiment were genotyped for over 770,000 SNP across the genome and compared using smoothed FST. The taurine sample was represented by ten breeds and the contrasting zebu cohort by three breeds.ResultsEach cattle group evidenced similar numbers of polymorphic markers well distributed across the genome. Principal components analyses and unsupervised clustering confirmed the well-characterized main division of domestic cattle. The top 1% smoothed FST, potentially associated to positive selection, contained 48 genomic regions across 17 chromosomes. Nearly half of the top FST signals (n = 22) were previously detected using a lower density SNP assay. Amongst the strongest signals were the BTA7:~50 Mb and BTA14:~25 Mb; both regions harboring candidate genes and different patterns of linkage disequilibrium that potentially represent intrinsic differences between cattle types. The bottom 1% of the smoothed FST values, potentially associated to balancing selection, included 24 regions across 13 chromosomes. These regions often overlap with copy number variants, including the highly variable region at BTA23:~24 Mb that harbors a large number of MHC genes. Under these regions, 318 unique Ensembl genes are annotated with a significant overrepresentation of immune related pathways.ConclusionsGenomic regions that are potentially linked to purifying or balancing selection processes in domestic cattle were identified. These regions are of particular interest to understand the natural and human selective pressures to which these subspecies were exposed to and how the genetic background of these populations evolved in response to environmental challenges and human manipulation.


BMC Genomics | 2009

Insertion sequence content reflects genome plasticity in strains of the root nodule actinobacterium Frankia

Derek M. Bickhart; Johann Peter Gogarten; Pascal Lapierre; Louis S. Tisa; Philippe Normand; David R. Benson

BackgroundGenome analysis of three Frankia sp. strains has revealed a high number of transposable elements in two of the strains. Twelve out of the 20 major families of bacterial Insertion Sequence (IS) elements are represented in the 148 annotated transposases of Frankia strain HFPCcI3 (CcI3) comprising 3% of its total coding sequences (CDS). EAN1pec (EAN) has 183 transposase ORFs from 13 IS families comprising 2.2% of its CDS. Strain ACN14a (ACN) differs significantly from the other strains with only 33 transposase ORFs (0.5% of the total CDS) from 9 IS families.ResultsInsertion sequences in the Frankia genomes were analyzed using BLAST searches, PHYML phylogenies and the IRF (Inverted Repeat Finder) algorithms. To identify putative or decaying IS elements, a PSI-TBLASTN search was performed on all three genomes, identifying 36%, 39% and 12% additional putative transposase ORFs than originally annotated in strains CcI3, EAN and ACN, respectively. The distribution of transposase ORFs in each strain was then analysed using a sliding window, revealing significant clustering of elements in regions of the EAN and CcI3 genomes. Lastly the three genomes were aligned with the MAUVE multiple genome alignment tool, revealing several Large Chromosome Rearrangement (LCR) events; many of which correlate to transposase clusters.ConclusionAnalysis of transposase ORFs in Frankia sp. revealed low inter-strain diversity of transposases, suggesting that the majority of transposase proliferation occurred without recent horizontal transfer of novel mobile elements from outside the genus. Exceptions to this include representatives from the IS3 family in strain EAN and seven IS4 transposases in all three strains that have a lower G+C content, suggesting recent horizontal transfer. The clustering of transposase ORFs near LCRs revealed a tendency for IS elements to be associated with regions of chromosome instability in the three strains. The results of this study suggest that IS elements may help drive chromosome differences in different Frankia sp. strains as they have adapted to a variety of hosts and environments.


PLOS ONE | 2014

Bovine Exome Sequence Analysis and Targeted SNP Genotyping of Recessive Fertility Defects BH1, HH2, and HH3 Reveal a Putative Causative Mutation in SMC2 for HH3

M. C. McClure; Derek M. Bickhart; Dan Null; P.M. VanRaden; Lingyang Xu; G.R. Wiggans; George E. Liu; Steve Schroeder; Jarret Glasscock; Jon Armstrong; J.B. Cole; Curtis P. Van Tassell; Tad S. Sonstegard

The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array.


Frontiers in Genetics | 2014

The challenges and importance of structural variation detection in livestock

Derek M. Bickhart; George E. Liu

Recent studies in humans and other model organisms have demonstrated that structural variants (SVs) comprise a substantial proportion of variation among individuals of each species. Many of these variants have been linked to debilitating diseases in humans, thereby cementing the importance of refining methods for their detection. Despite progress in the field, reliable detection of SVs still remains a problem even for human subjects. Many of the underlying problems that make SVs difficult to detect in humans are amplified in livestock species, whose lower quality genome assemblies and incomplete gene annotation can often give rise to false positive SV discoveries. Regardless of the challenges, SV detection is just as important for livestock researchers as it is for human researchers, given that several productive traits and diseases have been linked to copy number variations (CNVs) in cattle, sheep, and pig. Already, there is evidence that many beneficial SVs have been artificially selected in livestock such as a duplication of the agouti signaling protein gene that causes white coat color in sheep. In this review, we will list current SV and CNV discoveries in livestock and discuss the problems that hinder routine discovery and tracking of these polymorphisms. We will also discuss the impacts of selective breeding on CNV and SV frequencies and mention how SV genotyping could be used in the future to improve genetic selection.

Collaboration


Dive into the Derek M. Bickhart's collaboration.

Top Co-Authors

Avatar

George E. Liu

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Tad S. Sonstegard

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Curtis P. Van Tassell

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

J.B. Cole

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

P.M. VanRaden

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Steven G. Schroeder

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

G.R. Wiggans

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

D.J. Null

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

T. P. L. Smith

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Yang Zhou

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge