Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tad S. Sonstegard is active.

Publication


Featured researches published by Tad S. Sonstegard.


Journal of Dairy Science | 2009

Invited review: reliability of genomic predictions for North American Holstein bulls.

P.M. VanRaden; C.P. Van Tassell; G.R. Wiggans; Tad S. Sonstegard; Robert D. Schnabel; Jeremy F. Taylor; F.S. Schenkel

Genetic progress will increase when breeders examine genotypes in addition to pedigrees and phenotypes. Genotypes for 38,416 markers and August 2003 genetic evaluations for 3,576 Holstein bulls born before 1999 were used to predict January 2008 daughter deviations for 1,759 bulls born from 1999 through 2002. Genotypes were generated using the Illumina BovineSNP50 BeadChip and DNA from semen contributed by US and Canadian artificial-insemination organizations to the Cooperative Dairy DNA Repository. Genomic predictions for 5 yield traits, 5 fitness traits, 16 conformation traits, and net merit were computed using a linear model with an assumed normal distribution for marker effects and also using a nonlinear model with a heavier tailed prior distribution to account for major genes. The official parent average from 2003 and a 2003 parent average computed from only the subset of genotyped ancestors were combined with genomic predictions using a selection index. Combined predictions were more accurate than official parent averages for all 27 traits. The coefficients of determination (R(2)) were 0.05 to 0.38 greater with nonlinear genomic predictions included compared with those from parent average alone. Linear genomic predictions had R(2) values similar to those from nonlinear predictions but averaged just 0.01 lower. The greatest benefits of genomic prediction were for fat percentage because of a known gene with a large effect. The R(2) values were converted to realized reliabilities by dividing by mean reliability of 2008 daughter deviations and then adding the difference between published and observed reliabilities of 2003 parent averages. When averaged across all traits, combined genomic predictions had realized reliabilities that were 23% greater than reliabilities of parent averages (50 vs. 27%), and gains in information were equivalent to 11 additional daughter records. Reliability increased more by doubling the number of bulls genotyped than the number of markers genotyped. Genomic prediction improves reliability by tracing the inheritance of genes even with small effects.


Genome Biology | 2009

A Whole-Genome Assembly of the Domestic Cow, Bos taurus

Aleksey V. Zimin; Arthur L. Delcher; Liliana Florea; David R. Kelley; Michael C. Schatz; Daniela Puiu; Finnian Hanrahan; Geo Pertea; Curtis P. Van Tassell; Tad S. Sonstegard; Guillaume Marçais; Michael Roberts; Poorani Subramanian; James A. Yorke

BackgroundThe genome of the domestic cow, Bos taurus, was sequenced using a mixture of hierarchical and whole-genome shotgun sequencing methods.ResultsWe have assembled the 35 million sequence reads and applied a variety of assembly improvement techniques, creating an assembly of 2.86 billion base pairs that has multiple improvements over previous assemblies: it is more complete, covering more of the genome; thousands of gaps have been closed; many erroneous inversions, deletions, and translocations have been corrected; and thousands of single-nucleotide errors have been corrected. Our evaluation using independent metrics demonstrates that the resulting assembly is substantially more accurate and complete than alternative versions.ConclusionsBy using independent mapping data and conserved synteny between the cow and human genomes, we were able to construct an assembly with excellent large-scale contiguity in which a large majority (approximately 91%) of the genome has been placed onto the 30 B. taurus chromosomes. We constructed a new cow-human synteny map that expands upon previous maps. We also identified for the first time a portion of the B. taurus Y chromosome.


PLOS ONE | 2009

Development and Characterization of a High Density SNP Genotyping Assay for Cattle

Lakshmi K. Matukumalli; Cynthia T. Lawley; Robert D. Schnabel; Jeremy F. Taylor; Mark F. Allan; Michael P. Heaton; Jeff O'Connell; Stephen S. Moore; T. P. L. Smith; Tad S. Sonstegard; Curtis P. Van Tassell

The success of genome-wide association (GWA) studies for the detection of sequence variation affecting complex traits in human has spurred interest in the use of large-scale high-density single nucleotide polymorphism (SNP) genotyping for the identification of quantitative trait loci (QTL) and for marker-assisted selection in model and agricultural species. A cost-effective and efficient approach for the development of a custom genotyping assay interrogating 54,001 SNP loci to support GWA applications in cattle is described. A novel algorithm for achieving a compressed inter-marker interval distribution proved remarkably successful, with median interval of 37 kb and maximum predicted gap of <350 kb. The assay was tested on a panel of 576 animals from 21 cattle breeds and six outgroup species and revealed that from 39,765 to 46,492 SNP are polymorphic within individual breeds (average minor allele frequency (MAF) ranging from 0.24 to 0.27). The assay also identified 79 putative copy number variants in cattle. Utility for GWA was demonstrated by localizing known variation for coat color and the presence/absence of horns to their correct genomic locations. The combination of SNP selection and the novel spacing algorithm allows an efficient approach for the development of high-density genotyping platforms in species having full or even moderate quality draft sequence. Aspects of the approach can be exploited in species which lack an available genome sequence. The BovineSNP50 assay described here is commercially available from Illumina and provides a robust platform for mapping disease genes and QTL in cattle.


Nature Methods | 2008

SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries.

Curtis P. Van Tassell; T. P. L. Smith; Lakshmi K. Matukumalli; Jeremy F Taylor; Robert D. Schnabel; Cynthia T. Lawley; Christian D. Haudenschild; Stephen S. Moore; Wesley C. Warren; Tad S. Sonstegard

High-density single-nucleotide polymorphism (SNP) arrays have revolutionized the ability of genome-wide association studies to detect genomic regions harboring sequence variants that affect complex traits. Extensive numbers of validated SNPs with known allele frequencies are essential to construct genotyping assays with broad utility. We describe an economical, efficient, single-step method for SNP discovery, validation and characterization that uses deep sequencing of reduced representation libraries (RRLs) from specified target populations. Using nearly 50 million sequences generated on an Illumina Genome Analyzer from DNA of 66 cattle representing three populations, we identified 62,042 putative SNPs and predicted their allele frequencies. Genotype data for these 66 individuals validated 92% of 23,357 selected genome-wide SNPs, with a genotypic and sequence allele frequency correlation of r = 0.67. This approach for simultaneous de novo discovery of high-quality SNPs and population characterization of allele frequencies may be applied to any species with at least a partially sequenced genome.


PLOS Biology | 2010

Multi-platform next-generation sequencing of the domestic Turkey (Meleagris gallopavo): Genome assembly and analysis

Rami A. Dalloul; Julie A Long; Aleksey V. Zimin; Luqman Aslam; Kathryn Beal; Le Ann Blomberg; Pascal Bouffard; David W. Burt; Oswald Crasta; R.P.M.A. Crooijmans; Kristal L. Cooper; Roger A. Coulombe; Supriyo De; Mary E. Delany; Jerry B. Dodgson; Jennifer J Dong; Clive Evans; Karin M. Frederickson; Paul Flicek; Liliana Florea; Otto Folkerts; M.A.M. Groenen; Tim Harkins; Javier Herrero; Steve Hoffmann; Hendrik-Jan Megens; Andrew Jiang; Pieter J. de Jong; Peter K. Kaiser; Heebal Kim

The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome.


Genome Research | 2010

Analysis of copy number variations among diverse cattle breeds

George E. Liu; Yali Hou; Bin Zhu; Maria Francesca Cardone; Lu Jiang; Angelo Cellamare; Apratim Mitra; L. J. Alexander; Luiz Lehmann Coutinho; Maria Elena Dell'Aquila; Lou C. Gasbarre; Gianni Lacalandra; Robert W. Li; Lakshmi K. Matukumalli; Dan J. Nonneman; Luciana Correia de Almeida Regitano; T. P. L. Smith; Jiuzhou Song; Tad S. Sonstegard; Curt P. Van Tassell; Mario Ventura; Evan E. Eichler; Tara G. McDaneld; J. W. Keele

Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here, we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in modern domesticated cattle using array comparative genomic hybridization (array CGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH). The array CGH panel included 90 animals from 11 Bos taurus, three Bos indicus, and three composite breeds for beef, dairy, or dual purpose. We identified over 200 candidate CNV regions (CNVRs) in total and 177 within known chromosomes, which harbor or are adjacent to gains or losses. These 177 high-confidence CNVRs cover 28.1 megabases or approximately 1.07% of the genome. Over 50% of the CNVRs (89/177) were found in multiple animals or breeds and analysis revealed breed-specific frequency differences and reflected aspects of the known ancestry of these cattle breeds. Selected CNVs were further validated by independent methods using qPCR and FISH. Approximately 67% of the CNVRs (119/177) completely or partially span cattle genes and 61% of the CNVRs (108/177) directly overlap with segmental duplications. The CNVRs span about 400 annotated cattle genes that are significantly enriched for specific biological functions, such as immunity, lactation, reproduction, and rumination. Multiple gene families, including ULBP, have gone through ruminant lineage-specific gene amplification. We detected and confirmed marked differences in their CNV frequencies across diverse breeds, indicating that some cattle CNVs are likely to arise independently in breeds and contribute to breed differences. Our results provide a valuable resource beyond microsatellites and single nucleotide polymorphisms to explore the full dimension of genetic variability for future cattle genomic research.


Journal of Dairy Science | 2009

Distribution and location of genetic effects for dairy traits

J.B. Cole; P.M. VanRaden; J.R. O’Connell; C.P. Van Tassell; Tad S. Sonstegard; Robert D. Schnabel; Jeremy F. Taylor; G.R. Wiggans

Genetic effects for many dairy traits and for total economic merit are evenly distributed across all chromosomes. A high-density scan using 38,416 single nucleotide polymorphism markers for 5,285 bulls confirmed 2 previously known major genes on Bos taurus autosomes (BTA) 6 and 14 but revealed few other large effects. Markers on BTA18 had the largest effects on calving ease, several conformation traits, longevity, and total merit. Prediction accuracy was highest using a heavy-tailed prior assuming that each marker had an effect on each trait, rather than assuming a normal distribution of effects as in a linear model, or that only some loci have nonzero effects. A prior model combining heavy tails with finite alleles produced results that were intermediate compared with the individual models. Differences between models were small (1 to 2%) for traits with no major genes and larger for heavy tails with traits having known quantitative trait loci (QTL; 6 to 8%). Analysis of bull recessive codes suggested that marker effects from genomic selection may be used to identify regions of chromosomes to search in detail for candidate genes, but individual single nucleotide polymorphisms were not tracking causative mutations with the exception of diacylglycerol O-acyltransferase 1. Additive genetic merits were constructed for each chromosome, and the distribution of BTA14-specific estimated breeding value (EBV) showed that selection primarily for milk yield has not changed the distribution of EBV for fat percentage even in the presence of a known QTL. Such chromosomal EBV also may be useful for identifying complementary mates in breeding programs. The QTL affecting dystocia, conformation, and economic merit on BTA18 appear to be related to calf size or birth weight and may be the result of longer gestation lengths. Results validate quantitative genetic assumptions that most traits are due to the contributions of a large number of genes of small additive effect, rather than support the finite locus model.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics

Jared E. Decker; J. Chris Pires; Gavin C. Conant; Stephanie D. McKay; Michael P. Heaton; Kefei Chen; Alan Cooper; Johanna Vilkki; Christopher M. Seabury; Alexandre R Caetano; Gary S. Johnson; Rick A. Brenneman; Olivier Hanotte; Lori S. Eggert; Pamela Wiener; Jong-Joo Kim; Kwan Suk Kim; Tad S. Sonstegard; Curt P. Van Tassell; H. L. Neibergs; J. C. McEwan; Rudiger Brauning; Luiz Lehmann Coutinho; Masroor Ellahi Babar; Gregory A. Wilson; Matthew C. McClure; Megan M. Rolf; JaeWoo Kim; Robert D. Schnabel; Jeremy F. Taylor

The Pecorans (higher ruminants) are believed to have rapidly speciated in the Mid-Eocene, resulting in five distinct extant families: Antilocapridae, Giraffidae, Moschidae, Cervidae, and Bovidae. Due to the rapid radiation, the Pecoran phylogeny has proven difficult to resolve, and 11 of the 15 possible rooted phylogenies describing ancestral relationships among the Antilocapridae, Giraffidae, Cervidae, and Bovidae have each been argued as representations of the true phylogeny. Here we demonstrate that a genome-wide single nucleotide polymorphism (SNP) genotyping platform designed for one species can be used to genotype ancient DNA from an extinct species and DNA from species diverged up to 29 million years ago and that the produced genotypes can be used to resolve the phylogeny for this rapidly radiated infraorder. We used a high-throughput assay with 54,693 SNP loci developed for Bos taurus taurus to rapidly genotype 678 individuals representing 61 Pecoran species. We produced a highly resolved phylogeny for this diverse group based upon 40,843 genome-wide SNP, which is five times as many informative characters as have previously been analyzed. We also establish a method to amplify and screen genomic information from extinct species, and place Bison priscus within the Bovidae. The quality of genotype calls and the placement of samples within a well-supported phylogeny may provide an important test for validating the fidelity and integrity of ancient samples. Finally, we constructed a phylogenomic network to accurately describe the relationships between 48 cattle breeds and facilitate inferences concerning the history of domestication and breed formation.


Genome Research | 2012

Copy number variation of individual cattle genomes using next-generation sequencing

Derek M. Bickhart; Yali Hou; Steven G. Schroeder; Can Alkan; Maria Francesca Cardone; Lakshmi K. Matukumalli; Jiuzhou Song; Robert D. Schnabel; Mario Ventura; Jeremy F. Taylor; José Fernando Garcia; Curtis P. Van Tassell; Tad S. Sonstegard; Evan E. Eichler; George E. Liu

Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one Holstein, and one Hereford) and one indicine (Nelore) cattle. Within mapped chromosomal sequence, we identified 1265 CNV regions comprising ~55.6-Mbp sequence--476 of which (~38%) have not previously been reported. We validated this sequence-based CNV call set with array comparative genomic hybridization (aCGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH), achieving a validation rate of 82% and a false positive rate of 8%. We further estimated absolute copy numbers for genomic segments and annotated genes in each individual. Surveys of the top 25 most variable genes revealed that the Nelore individual had the lowest copy numbers in 13 cases (~52%, χ(2) test; P-value <0.05). In contrast, genes related to pathogen- and parasite-resistance, such as CATHL4 and ULBP17, were highly duplicated in the Nelore individual relative to the taurine cattle, while genes involved in lipid transport and metabolism, including APOL3 and FABP2, were highly duplicated in the beef breeds. These CNV regions also harbor genes like BPIFA2A (BSP30A) and WC1, suggesting that some CNVs may be associated with breed-specific differences in adaptation, health, and production traits. By providing the first individualized cattle CNV and segmental duplication maps and genome-wide gene copy number estimates, we enable future CNV studies into highly duplicated regions in the cattle genome.


BMC Genomics | 2011

Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows

J.B. Cole; G.R. Wiggans; Li Ma; Tad S. Sonstegard; Thomas J Lawlor; B.A. Crooker; Curtis P. Van Tassell; Jing Yang; Shengwen Wang; Lakshmi K. Matukumalli; Yang Da

BackgroundGenome-wide association analysis is a powerful tool for annotating phenotypic effects on the genome and knowledge of genes and chromosomal regions associated with dairy phenotypes is useful for genome and gene-based selection. Here, we report results of a genome-wide analysis of predicted transmitting ability (PTA) of 31 production, health, reproduction and body conformation traits in contemporary Holstein cows.ResultsGenome-wide association analysis identified a number of candidate genes and chromosome regions associated with 31 dairy traits in contemporary U.S. Holstein cows. Highly significant genes and chromosome regions include: BTA13s GNAS region for milk, fat and protein yields; BTA7s INSR region and BTAXs LOC520057 and GRIA3 for daughter pregnancy rate, somatic cell score and productive life; BTA2s LRP1B for somatic cell score; BTA14s DGAT1-NIBP region for fat percentage; BTA1s FKBP2 for protein yields and percentage, BTA26s MGMT and BTA6s PDGFRA for protein percentage; BTA18s 53.9-58.7 Mb region for service-sire and daughter calving ease and service-sire stillbirth; BTA18s PGLYRP1-IGFL1 region for a large number of traits; BTA18s LOC787057 for service-sire stillbirth and daughter calving ease; BTA15s CD82, BTA23s DST and the MOCS1-LRFN2 region for daughter stillbirth; and BTAXs LOC520057 and GRIA3 for daughter pregnancy rate. For body conformation traits, BTA11, BTAX, BTA10, BTA5, and BTA26 had the largest concentrations of SNP effects, and PHKA2 of BTAX and REN of BTA16 had the most significant effects for body size traits. For body shape traits, BTAX, BTA19 and BTA3 were most significant. Udder traits were affected by BTA16, BTA22, BTAX, BTA2, BTA10, BTA11, BTA20, BTA22 and BTA25, teat traits were affected by BTA6, BTA7, BTA9, BTA16, BTA11, BTA26 and BTA17, and feet/legs traits were affected by BTA11, BTA13, BTA18, BTA20, and BTA26.ConclusionsGenome-wide association analysis identified a number of genes and chromosome regions associated with 31 production, health, reproduction and body conformation traits in contemporary Holstein cows. The results provide useful information for annotating phenotypic effects on the dairy genome and for building consensus of dairy QTL effects.

Collaboration


Dive into the Tad S. Sonstegard's collaboration.

Top Co-Authors

Avatar

Curtis P. Van Tassell

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

T. P. L. Smith

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Steven G. Schroeder

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

C.P. Van Tassell

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Derek M. Bickhart

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

George E. Liu

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

J.B. Cole

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

G.R. Wiggans

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge