Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek Pickard is active.

Publication


Featured researches published by Derek Pickard.


Nature | 2001

Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18.

Julian Parkhill; Gordon Dougan; K. D. James; Nicholas R. Thomson; Derek Pickard; John Wain; Carol Churcher; Karen Mungall; Stephen D. Bentley; Matthew T. G. Holden; Mohammed Sebaihia; Stephen Baker; D. Basham; Karen Brooks; Tracey Chillingworth; Phillippa L. Connerton; A. Cronin; Paul Davis; Robert Davies; L. Dowd; Nicholas J. White; Jeremy Farrar; Theresa Feltwell; N. Hamlin; Ashraful Haque; Tran Tinh Hien; S. Holroyd; Kay Jagels; Anders Krogh; Tom Larsen

Salmonella enterica serovar Typhi (S. typhi) is the aetiological agent of typhoid fever, a serious invasive bacterial disease of humans with an annual global burden of approximately 16 million cases, leading to 600,000 fatalities. Many S. enterica serovars actively invade the mucosal surface of the intestine but are normally contained in healthy individuals by the local immune defence mechanisms. However, S. typhi has evolved the ability to spread to the deeper tissues of humans, including liver, spleen and bone marrow. Here we have sequenced the 4,809,037-base pair (bp) genome of a S. typhi (CT18) that is resistant to multiple drugs, revealing the presence of hundreds of insertions and deletions compared with the Escherichia coli genome, ranging in size from single genes to large islands. Notably, the genome sequence identifies over two hundred pseudogenes, several corresponding to genes that are known to contribute to virulence in Salmonella typhimurium. This genetic degradation may contribute to the human-restricted host range for S. typhi. CT18 harbours a 218,150-bp multiple-drug-resistance incH1 plasmid (pHCM1), and a 106,516-bp cryptic plasmid (pHCM2), which shows recent common ancestry with a virulence plasmid of Yersinia pestis.


Lancet Infectious Diseases | 2011

Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study

Laura García-Álvarez; Matthew T. G. Holden; Heather Lindsay; Cerian R Webb; Derek J. Brown; Martin D. Curran; Enid Walpole; Karen Brooks; Derek Pickard; Christopher Teale; Julian Parkhill; Stephen D. Bentley; Giles Edwards; E Kirsty Girvan; Angela M. Kearns; Bruno Pichon; Robert Hill; Anders Rhod Larsen; Robert Skov; Sharon J. Peacock; Duncan J. Maskell; Mark A. Holmes

Summary Background Animals can act as a reservoir and source for the emergence of novel meticillin-resistant Staphylococcus aureus (MRSA) clones in human beings. Here, we report the discovery of a strain of S aureus (LGA251) isolated from bulk milk that was phenotypically resistant to meticillin but tested negative for the mecA gene and a preliminary investigation of the extent to which such strains are present in bovine and human populations. Methods Isolates of bovine MRSA were obtained from the Veterinary Laboratories Agency in the UK, and isolates of human MRSA were obtained from diagnostic or reference laboratories (two in the UK and one in Denmark). From these collections, we searched for mecA PCR-negative bovine and human S aureus isolates showing phenotypic meticillin resistance. We used whole-genome sequencing to establish the genetic basis for the observed antibiotic resistance. Findings A divergent mecA homologue (mecALGA251) was discovered in the LGA251 genome located in a novel staphylococcal cassette chromosome mec element, designated type-XI SCCmec. The mecALGA251 was 70% identical to S aureus mecA homologues and was initially detected in 15 S aureus isolates from dairy cattle in England. These isolates were from three different multilocus sequence type lineages (CC130, CC705, and ST425); spa type t843 (associated with CC130) was identified in 60% of bovine isolates. When human mecA-negative MRSA isolates were tested, the mecALGA251 homologue was identified in 12 of 16 isolates from Scotland, 15 of 26 from England, and 24 of 32 from Denmark. As in cows, t843 was the most common spa type detected in human beings. Interpretation Although routine culture and antimicrobial susceptibility testing will identify S aureus isolates with this novel mecA homologue as meticillin resistant, present confirmatory methods will not identify them as MRSA. New diagnostic guidelines for the detection of MRSA should consider the inclusion of tests for mecALGA251. Funding Department for Environment, Food and Rural Affairs, Higher Education Funding Council for England, Isaac Newton Trust (University of Cambridge), and the Wellcome Trust.


Nature Genetics | 2013

Emergence and global spread of epidemic healthcare-associated Clostridium difficile

Miao He; Fabio Miyajima; Paul C. Roberts; Louise Ellison; Derek Pickard; Melissa J. Martin; Thomas Richard Connor; Simon R. Harris; Derek Fairley; Kathleen B. Bamford; Stephanie D'Arc; Jonathan S. Brazier; Derek J. Brown; John E. Coia; Gill Douce; Dale N. Gerding; Heejung Kim; Tse Hsien Koh; Haru Kato; Mitsutoshi Senoh; Tom Louie; Stephen L. Michell; Emma Butt; Sharon J. Peacock; Nick Brown; Thomas V. Riley; Glen Songer; Mark H. Wilcox; Munir Pirmohamed; Ed J. Kuijper

Epidemic C. difficile (027/BI/NAP1) has rapidly emerged in the past decade as the leading cause of antibiotic-associated diarrhea worldwide. However, the key events in evolutionary history leading to its emergence and the subsequent patterns of global spread remain unknown. Here, we define the global population structure of C. difficile 027/BI/NAP1 using whole-genome sequencing and phylogenetic analysis. We show that two distinct epidemic lineages, FQR1 and FQR2, not one as previously thought, emerged in North America within a relatively short period after acquiring the same fluoroquinolone resistance–conferring mutation and a highly related conjugative transposon. The two epidemic lineages showed distinct patterns of global spread, and the FQR2 lineage spread more widely, leading to healthcare-associated outbreaks in the UK, continental Europe and Australia. Our analysis identifies key genetic changes linked to the rapid transcontinental dissemination of epidemic C. difficile 027/BI/NAP1 and highlights the routes by which it spreads through the global healthcare system.


PLOS Pathogens | 2012

Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice.

Trevor D. Lawley; Simon Clare; Alan W. Walker; Mark D. Stares; Thomas Richard Connor; Claire Raisen; David Goulding; Roland Rad; Fernanda Schreiber; Cordelia Brandt; Laura J. Deakin; Derek Pickard; Sylvia H. Duncan; Harry J. Flint; Taane G. Clark; Julian Parkhill; Gordon Dougan

Relapsing C. difficile disease in humans is linked to a pathological imbalance within the intestinal microbiota, termed dysbiosis, which remains poorly understood. We show that mice infected with epidemic C. difficile (genotype 027/BI) develop highly contagious, chronic intestinal disease and persistent dysbiosis characterized by a distinct, simplified microbiota containing opportunistic pathogens and altered metabolite production. Chronic C. difficile 027/BI infection was refractory to vancomycin treatment leading to relapsing disease. In contrast, treatment of C. difficile 027/BI infected mice with feces from healthy mice rapidly restored a diverse, healthy microbiota and resolved C. difficile disease and contagiousness. We used this model to identify a simple mixture of six phylogenetically diverse intestinal bacteria, including novel species, which can re-establish a health-associated microbiota and clear C. difficile 027/BI infection from mice. Thus, targeting a dysbiotic microbiota with a defined mixture of phylogenetically diverse bacteria can trigger major shifts in the microbial community structure that displaces C. difficile and, as a result, resolves disease and contagiousness. Further, we demonstrate a rational approach to harness the therapeutic potential of health-associated microbial communities to treat C. difficile disease and potentially other forms of intestinal dysbiosis.


Genome Research | 2008

Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways

Nicholas R. Thomson; Debra J. Clayton; Daniel Windhorst; Georgios S. Vernikos; Susanne Davidson; Carol Churcher; Michael A. Quail; Mark P. Stevens; Michael Jones; Michael Watson; Andy Barron; Abigail N. Layton; Derek Pickard; Robert A. Kingsley; Alex Bignell; Louise Clark; Barbara Harris; Doug Ormond; Zahra Abdellah; Karen Brooks; Inna Cherevach; Tracey Chillingworth; John Woodward; Halina Norberczak; Angela Lord; Claire Arrowsmith; Kay Jagels; Sharon Moule; Karen Mungall; Mandy Sanders

We have determined the complete genome sequences of a host-promiscuous Salmonella enterica serovar Enteritidis PT4 isolate P125109 and a chicken-restricted Salmonella enterica serovar Gallinarum isolate 287/91. Genome comparisons between these and other Salmonella isolates indicate that S. Gallinarum 287/91 is a recently evolved descendent of S. Enteritidis. Significantly, the genome of S. Gallinarum has undergone extensive degradation through deletion and pseudogene formation. Comparison of the pseudogenes in S. Gallinarum with those identified previously in other host-adapted bacteria reveals the loss of many common functional traits and provides insights into possible mechanisms of host and tissue adaptation. We propose that experimental analysis in chickens and mice of S. Enteritidis-harboring mutations in functional homologs of the pseudogenes present in S. Gallinarum could provide an experimentally tractable route toward unraveling the genetic basis of host adaptation in S. enterica.


Molecular Microbiology | 1991

The role of a stress‐response protein in Salmonella typhimurium virulence

K.S. Johnson; Ian G. Charles; Gordon Dougan; Derek Pickard; Peadar O'Gaora; G. Costa; T. Ali; I.A. Miller; Carlos E. Hormaeche

We recently described the use of selective transposon mutagenesis to generate a series of a virulent mutants of a pathogenic strain of Salmonella typhimurium. Cloning and sequencing of the insertion sites from two of these mutants reveals that both have identical locations within an open reading frame that is highly homologous to a gene, htrA, encoding a heat‐shock protein in Escherichia coli. DNA sequence analysis of S. typhimurium htrA reveals the presence of a gene capable of encoding a protein with a calculated Mr of 49316 that has 88.7% protein:protein homology with its E. coli counterpart. In E. coli, lesions in this gene, also known as degP, reduce proteolytic degradation of aberrant periplasmic proteins. Characteristics of the S. typhimurium htrA mutants, 046 and 014, in vivo and in vitro suggested that they are avirulent because of impaired ability to survive and/or replicate in host tissues. In vitro, the S. typhimurium htrA mutants 046 and 014 are not temperature‐sensitive but were found to be more susceptible to oxidative stress than the parent, suggesting that they may be less able to withstand oxidative killing within macrophages.


PLOS Genetics | 2009

A strand-specific RNA-seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi

Timothy T. Perkins; Robert A. Kingsley; Maria Fookes; Paul P. Gardner; Keith D. James; Lu-Lu Yu; Samuel A. Assefa; Miao-Xia He; Nicholas J. Croucher; Derek Pickard; Duncan J. Maskell; Julian Parkhill; Jyoti S. Choudhary; Nicholas R. Thomson; Gordon Dougan

High-density, strand-specific cDNA sequencing (ssRNA–seq) was used to analyze the transcriptome of Salmonella enterica serovar Typhi (S. Typhi). By mapping sequence data to the entire S. Typhi genome, we analyzed the transcriptome in a strand-specific manner and further defined transcribed regions encoded within prophages, pseudogenes, previously un-annotated, and 3′- or 5′-untranslated regions (UTR). An additional 40 novel candidate non-coding RNAs were identified beyond those previously annotated. Proteomic analysis was combined with transcriptome data to confirm and refine the annotation of a number of hpothetical genes. ssRNA–seq was also combined with microarray and proteome analysis to further define the S. Typhi OmpR regulon and identify novel OmpR regulated transcripts. Thus, ssRNA–seq provides a novel and powerful approach to the characterization of the bacterial transcriptome.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae

Bärbel Stecher; Rémy Denzler; Lisa M. Maier; Florian Bernet; Mandy Sanders; Derek Pickard; Manja Barthel; Astrid M. Westendorf; Karen A. Krogfelt; Alan W. Walker; Martin Ackermann; Ulrich Dobrindt; Nicholas R. Thomson; Wolf-Dietrich Hardt

The mammalian gut harbors a dense microbial community interacting in multiple ways, including horizontal gene transfer (HGT). Pangenome analyses established particularly high levels of genetic flux between Gram-negative Enterobacteriaceae. However, the mechanisms fostering intraenterobacterial HGT are incompletely understood. Using a mouse colitis model, we found that Salmonella-inflicted enteropathy elicits parallel blooms of the pathogen and of resident commensal Escherichia coli. These blooms boosted conjugative HGT of the colicin-plasmid p2 from Salmonella enterica serovar Typhimurium to E. coli. Transconjugation efficiencies of ∼100% in vivo were attributable to high intrinsic p2-transfer rates. Plasmid-encoded fitness benefits contributed little. Under normal conditions, HGT was blocked by the commensal microbiota inhibiting contact-dependent conjugation between Enterobacteriaceae. Our data show that pathogen-driven inflammatory responses in the gut can generate transient enterobacterial blooms in which conjugative transfer occurs at unprecedented rates. These blooms may favor reassortment of plasmid-encoded genes between pathogens and commensals fostering the spread of fitness-, virulence-, and antibiotic-resistance determinants.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli

Danilo Gomes Moriel; Isabella Bertoldi; Angela Spagnuolo; Sara Marchi; Roberto Rosini; Barbara Nesta; Ilaria Pastorello; Vanja A. Mariani Corea; Giulia Torricelli; Elena Cartocci; Silvana Savino; Maria Scarselli; Ulrich Dobrindt; Jörg Hacker; Hervé Tettelin; Luke J. Tallon; Steven A. Sullivan; Lothar H. Wieler; Christa Ewers; Derek Pickard; Gordon Dougan; Maria Rita Fontana; Rino Rappuoli; Mariagrazia Pizza; Laura Serino

Extraintestinal pathogenic Escherichia coli (ExPEC) are a common cause of disease in both mammals and birds. A vaccine to prevent such infections would be desirable given the increasing antibiotic resistance of these bacteria. We have determined the genome sequence of ExPEC IHE3034 (ST95) isolated from a case of neonatal meningitis and compared this to available genome sequences of other ExPEC strains and a few nonpathogenic E. coli. We found 19 genomic islands present in the genome of IHE3034, which are absent in the nonpathogenic E. coli isolates. By using subtractive reverse vaccinology we identified 230 antigens present in ExPEC but absent (or present with low similarity) in nonpathogenic strains. Nine antigens were protective in a mouse challenge model. Some of them were also present in other pathogenic non-ExPEC strains, suggesting that a broadly protective E. coli vaccine may be possible. The gene encoding the most protective antigen was detected in most of the E. coli isolates, highly conserved in sequence and found to be exported by a type II secretion system which seems to be nonfunctional in nonpathogenic strains.


Infection and Immunity | 2012

The Clostridium difficile spo0A gene is a persistence and transmission factor.

Laura J. Deakin; Simon Clare; Robert P. Fagan; Lisa F. Dawson; Derek Pickard; Mike West; Brendan W. Wren; Neil F. Fairweather; Gordon Dougan; Trevor D. Lawley

ABSTRACT Clostridium difficile is a major cause of chronic antibiotic-associated diarrhea and a significant health care-associated pathogen that forms highly resistant and infectious spores. Spo0A is a highly conserved transcriptional regulator that plays a key role in initiating sporulation in Bacillus and Clostridium species. Here, we use a murine model to study the role of the C. difficile spo0A gene during infection and transmission. We demonstrate that C. difficile spo0A mutant derivatives can cause intestinal disease but are unable to persist within and effectively transmit between mice. Thus, the C. difficile Spo0A protein plays a key role in persistent infection, including recurrence and host-to-host transmission in mice.

Collaboration


Dive into the Derek Pickard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Parkhill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Kingsley

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Clare

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge