Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas R. Thomson is active.

Publication


Featured researches published by Nicholas R. Thomson.


Nature | 2002

Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)

Stephen D. Bentley; K. F. Chater; A.-M. Cerdeño-Tárraga; Gregory L. Challis; Nicholas R. Thomson; Keith D. James; David Harris; M. A. Quail; H. Kieser; D. Harper; Alex Bateman; S. Brown; G. Chandra; Carton W. Chen; Mark O. Collins; Ann Cronin; Audrey Fraser; Arlette Goble; J. Hidalgo; T. Hornsby; S. Howarth; Chih-Hung Huang; T. Kieser; L. Larke; Lee Murphy; K. Oliver; Susan O'Neil; Ester Rabbinowitsch; Marie-Adele Rajandream; Kim Rutherford

Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent ‘tissue-specific’ isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central ‘core’ of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering.


Nature | 2001

Massive gene decay in the leprosy bacillus.

Stewart T. Cole; Karin Eiglmeier; Julian Parkhill; K. D. James; Nicholas R. Thomson; Paul R. Wheeler; Nadine Honoré; Thierry Garnier; Carol Churcher; David Harris; Karen Mungall; D. Basham; D. Brown; Tracey Chillingworth; R. Connor; Robert Davies; K. Devlin; S. Duthoy; Theresa Feltwell; A. Fraser; N. Hamlin; S. Holroyd; T. Hornsby; Kay Jagels; Céline Lacroix; J. Maclean; Sharon Moule; Lee Murphy; Karen Oliver; Michael A. Quail

Leprosy, a chronic human neurological disease, results from infection with the obligate intracellular pathogen Mycobacterium leprae, a close relative of the tubercle bacillus. Mycobacterium leprae has the longest doubling time of all known bacteria and has thwarted every effort at culture in the laboratory. Comparing the 3.27-megabase (Mb) genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis (4.41 Mb) provides clear explanations for these properties and reveals an extreme case of reductive evolution. Less than half of the genome contains functional genes but pseudogenes, with intact counterparts in M. tuberculosis, abound. Genome downsizing and the current mosaic arrangement appear to have resulted from extensive recombination events between dispersed repetitive sequences. Gene deletion and decay have eliminated many important metabolic activities including siderophore production, part of the oxidative and most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits.


Nature | 2001

Genome sequence of Yersinia pestis , the causative agent of plague

Julian Parkhill; Brendan W. Wren; Nicholas R. Thomson; Richard W. Titball; Matthew T. G. Holden; Michael B. Prentice; Mohammed Sebaihia; K. D. James; Carol Churcher; Karen Mungall; Stephen Baker; D. Basham; Stephen D. Bentley; Karen Brooks; Ana Cerdeño-Tárraga; Tracey Chillingworth; A. Cronin; Robert Davies; Paul Davis; Gordon Dougan; Theresa Feltwell; N. Hamlin; S. Holroyd; Kay Jagels; Andrey V. Karlyshev; S. Leather; Sharon Moule; Petra C. F. Oyston; Michael A. Quail; Kim Rutherford

The Gram-negative bacterium Yersinia pestis is the causative agent of the systemic invasive infectious disease classically referred to as plague, and has been responsible for three human pandemics: the Justinian plague (sixth to eighth centuries), the Black Death (fourteenth to nineteenth centuries) and modern plague (nineteenth century to the present day). The recent identification of strains resistant to multiple drugs and the potential use of Y. pestis as an agent of biological warfare mean that plague still poses a threat to human health. Here we report the complete genome sequence of Y. pestis strain CO92, consisting of a 4.65-megabase (Mb) chromosome and three plasmids of 96.2 kilobases (kb), 70.3 kb and 9.6 kb. The genome is unusually rich in insertion sequences and displays anomalies in GC base-composition bias, indicating frequent intragenomic recombination. Many genes seem to have been acquired from other bacteria and viruses (including adhesins, secretion systems and insecticidal toxins). The genome contains around 150 pseudogenes, many of which are remnants of a redundant enteropathogenic lifestyle. The evidence of ongoing genome fluidity, expansion and decay suggests Y. pestis is a pathogen that has undergone large-scale genetic flux and provides a unique insight into the ways in which new and highly virulent pathogens evolve.


Nature | 2001

Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18.

Julian Parkhill; Gordon Dougan; K. D. James; Nicholas R. Thomson; Derek Pickard; John Wain; Carol Churcher; Karen Mungall; Stephen D. Bentley; Matthew T. G. Holden; Mohammed Sebaihia; Stephen Baker; D. Basham; Karen Brooks; Tracey Chillingworth; Phillippa L. Connerton; A. Cronin; Paul Davis; Robert Davies; L. Dowd; Nicholas J. White; Jeremy Farrar; Theresa Feltwell; N. Hamlin; Ashraful Haque; Tran Tinh Hien; S. Holroyd; Kay Jagels; Anders Krogh; Tom Larsen

Salmonella enterica serovar Typhi (S. typhi) is the aetiological agent of typhoid fever, a serious invasive bacterial disease of humans with an annual global burden of approximately 16 million cases, leading to 600,000 fatalities. Many S. enterica serovars actively invade the mucosal surface of the intestine but are normally contained in healthy individuals by the local immune defence mechanisms. However, S. typhi has evolved the ability to spread to the deeper tissues of humans, including liver, spleen and bone marrow. Here we have sequenced the 4,809,037-base pair (bp) genome of a S. typhi (CT18) that is resistant to multiple drugs, revealing the presence of hundreds of insertions and deletions compared with the Escherichia coli genome, ranging in size from single genes to large islands. Notably, the genome sequence identifies over two hundred pseudogenes, several corresponding to genes that are known to contribute to virulence in Salmonella typhimurium. This genetic degradation may contribute to the human-restricted host range for S. typhi. CT18 harbours a 218,150-bp multiple-drug-resistance incH1 plasmid (pHCM1), and a 106,516-bp cryptic plasmid (pHCM2), which shows recent common ancestry with a virulence plasmid of Yersinia pestis.


Nature Genetics | 2003

Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica

Julian Parkhill; Mohammed Sebaihia; Andrew Preston; Lee Murphy; Nicholas R. Thomson; David Harris; Matthew T. G. Holden; Carol Churcher; Stephen D. Bentley; Karen Mungall; Ana Cerdeño-Tárraga; Louise M. Temple; Keith James; Barbara Harris; Michael A. Quail; Mark Achtman; Rebecca Atkin; Steven Baker; David Basham; Nathalie Bason; Inna Cherevach; Tracey Chillingworth; Matthew Collins; Anne Cronin; Paul Davis; Jonathan Doggett; Theresa Feltwell; Arlette Goble; N. Hamlin; Heidi Hauser

Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative β-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.


Nature Genetics | 2006

The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome.

Mohammed Sebaihia; Brendan W. Wren; Peter Mullany; Neil Fairweather; Nigel P. Minton; Richard A. Stabler; Nicholas R. Thomson; Adam P. Roberts; Ana Cerdeño-Tárraga; Hongmei Wang; Matthew T. G. Holden; Anne Wright; Carol Churcher; Michael A. Quail; Stephen Baker; Nathalie Bason; Karen Brooks; Tracey Chillingworth; Ann Cronin; Paul Davis; Linda Dowd; Audrey Fraser; Theresa Feltwell; Zahra Hance; S. Holroyd; Kay Jagels; Sharon Moule; Karen Mungall; Claire Price; Ester Rabbinowitsch

We determined the complete genome sequence of Clostridium difficile strain 630, a virulent and multidrug-resistant strain. Our analysis indicates that a large proportion (11%) of the genome consists of mobile genetic elements, mainly in the form of conjugative transposons. These mobile elements are putatively responsible for the acquisition by C. difficile of an extensive array of genes involved in antimicrobial resistance, virulence, host interaction and the production of surface structures. The metabolic capabilities encoded in the genome show multiple adaptations for survival and growth within the gut environment. The extreme genome variability was confirmed by whole-genome microarray analysis; it may reflect the organisms niche in the gut and should provide information on the evolution of virulence in this organism.


Journal of Bacteriology | 2008

The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates

David A. Rasko; M. J. Rosovitz; Garry Myers; Emmanuel F. Mongodin; W. Florian Fricke; Pawel Gajer; Jonathan Crabtree; Mohammed Sebaihia; Nicholas R. Thomson; Roy R. Chaudhuri; Ian R. Henderson; Vanessa Sperandio; Jacques Ravel

Whole-genome sequencing has been skewed toward bacterial pathogens as a consequence of the prioritization of medical and veterinary diseases. However, it is becoming clear that in order to accurately measure genetic variation within and between pathogenic groups, multiple isolates, as well as commensal species, must be sequenced. This study examined the pangenomic content of Escherichia coli. Six distinct E. coli pathovars can be distinguished using molecular or phenotypic markers, but only two of the six pathovars have been subjected to any genome sequencing previously. Thus, this report provides a seminal description of the genomic contents and unique features of three unsequenced pathovars, enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. We also determined the first genome sequence of a human commensal E. coli isolate, E. coli HS, which will undoubtedly provide a new baseline from which workers can examine the evolution of pathogenic E. coli. Comparison of 17 E. coli genomes, 8 of which are new, resulted in identification of approximately 2,200 genes conserved in all isolates. We were also able to identify genes that were isolate and pathovar specific. Fewer pathovar-specific genes were identified than anticipated, suggesting that each isolate may have independently developed virulence capabilities. Pangenome calculations indicate that E. coli genomic diversity represents an open pangenome model containing a reservoir of more than 13,000 genes, many of which may be uncharacterized but important virulence factors. This comparative study of the species E. coli, while descriptive, should provide the basis for future functional work on this important group of pathogens.


Nucleic Acids Research | 2006

Escherichia coli K-12: a cooperatively developed annotation snapshot—2005

Monica Riley; Takashi Abe; Martha B. Arnaud; Mary K.B. Berlyn; Frederick R. Blattner; Roy R. Chaudhuri; Jeremy D. Glasner; Takashi Horiuchi; Ingrid M. Keseler; Takehide Kosuge; Hirotada Mori; Nicole T. Perna; Guy Plunkett; Kenneth E. Rudd; Margrethe H. Serres; Gavin H. Thomas; Nicholas R. Thomson; David S. Wishart; Barry L. Wanner

The goal of this group project has been to coordinate and bring up-to-date information on all genes of Escherichia coli K-12. Annotation of the genome of an organism entails identification of genes, the boundaries of genes in terms of precise start and end sites, and description of the gene products. Known and predicted functions were assigned to each gene product on the basis of experimental evidence or sequence analysis. Since both kinds of evidence are constantly expanding, no annotation is complete at any moment in time. This is a snapshot analysis based on the most recent genome sequences of two E.coli K-12 bacteria. An accurate and up-to-date description of E.coli K-12 genes is of particular importance to the scientific community because experimentally determined properties of its gene products provide fundamental information for annotation of innumerable genes of other organisms. Availability of the complete genome sequence of two K-12 strains allows comparison of their genotypes and mutant status of alleles.


Omics A Journal of Integrative Biology | 2008

Toward an Online Repository of Standard Operating Procedures (SOPs) for (Meta)genomic Annotation

Samuel V. Angiuoli; Aaron Gussman; William Klimke; Guy Cochrane; Dawn Field; George M Garrity; Chinnappa D. Kodira; Nikos C. Kyrpides; Ramana Madupu; Victor Markowitz; Tatiana Tatusova; Nicholas R. Thomson; Owen White

The methodologies used to generate genome and metagenome annotations are diverse and vary between groups and laboratories. Descriptions of the annotation process are helpful in interpreting genome annotation data. Some groups have produced Standard Operating Procedures (SOPs) that describe the annotation process, but standards are lacking for structure and content of these descriptions. In addition, there is no central repository to store and disseminate procedures and protocols for genome annotation. We highlight the importance of SOPs for genome annotation and endorse an online repository of SOPs.


Bioinformatics | 2009

DNAPlotter: circular and linear interactive genome visualization

Tim Carver; Nicholas R. Thomson; Alan J. Bleasby; Matthew Berriman; Julian Parkhill

Summary: DNAPlotter is an interactive Java application for generating circular and linear representations of genomes. Making use of the Artemis libraries to provide a user-friendly method of loading in sequence files (EMBL, GenBank, GFF) as well as data from relational databases, it filters features of interest to display on separate user-definable tracks. It can be used to produce publication quality images for papers or web pages. Availability: DNAPlotter is freely available (under a GPL licence) for download (for MacOSX, UNIX and Windows) at the Wellcome Trust Sanger Institute web sites: http://www.sanger.ac.uk/Software/Artemis/circular/ Contact: [email protected]

Collaboration


Dive into the Nicholas R. Thomson's collaboration.

Top Co-Authors

Avatar

Julian Parkhill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Gordon Dougan

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Michael A. Quail

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Maria Fookes

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Simon R. Harris

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohammed Sebaihia

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Derek Pickard

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Ana Cerdeño-Tárraga

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge