Derek W. Nickerson
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Derek W. Nickerson.
Stem Cells | 2011
Ahmed E. Hegab; Vi Luan Ha; Jennifer L. Gilbert; Kelvin X. Zhang; Stephen P. Malkoski; Andy T. Chon; Daphne O. Darmawan; Bharti Bisht; Aik T. Ooi; Matteo Pellegrini; Derek W. Nickerson; Brigitte N. Gomperts
The airway epithelium is in direct contact with the environment and therefore constantly at risk for injury. Basal cells (BCs) have been found to repair the surface epithelium (SE), but the contribution of other stem cell populations to airway epithelial repair has not been identified. We demonstrated that airway submucosal gland (SMG) duct cells, in addition to BCs, survived severe hypoxic‐ischemic injury. We developed a method to isolate duct cells from the airway. In vitro and in vivo models were used to compare the self‐renewal and differentiation potential of duct cells and BCs. We found that only duct cells were capable of regenerating SMG tubules and ducts, as well as the SE overlying the SMGs. SMG duct cells are therefore a multipotent stem cell for airway epithelial repair This is of importance to the field of lung regeneration as determining the repairing cell populations could lead to the identification of novel therapeutic targets and cell‐based therapies for patients with airway diseases. STEM CELLS 2011;29:1283–1293
The Journal of Allergy and Clinical Immunology | 2009
Shadi Al Khatib; Sevgi Keles; Maria Garcia-Lloret; Elif Karakoc-Aydiner; Ismail Reisli; Hasibe Artac; Yildiz Camcioglu; Haluk Çokuğraş; Ayper Somer; Necil Kutukculer; Mustafa Yilmaz; Aydan Ikinciogullari; Olcay Yegin; Mutlu Yüksek; Ferah Genel; Ercan Kucukosmanoglu; Nerin N. Bahceciler; Anupama Rambhatla; Derek W. Nickerson; Sean A. McGhee; Isil B. Barlan; Talal A. Chatila
BACKGROUND The hyper IgE syndrome (HIES) is characterized by abscesses, eczema, recurrent infections, skeletal and connective tissue abnormalities, elevated serum IgE, and diminished inflammatory responses. It exists as autosomal-dominant and autosomal-recessive forms that manifest common and distinguishing clinical features. A majority of those with autosomal-dominant HIES have heterozygous mutations in signal transducer and activator of transcription (STAT)-3 and impaired T(H)17 differentiation. OBJECTIVE To elucidate mechanisms underlying different forms of HIES. METHODS A cohort of 25 Turkish children diagnosed with HIES were examined for STAT3 mutations by DNA sequencing. Activation of STAT3 by IL-6 and IL-21 and STAT1 by IFN-alpha was assessed by intracellular staining with anti-phospho (p)STAT3 and -pSTAT1 antibodies. T(H)17 and T(H)1 cell differentiation was assessed by measuring the production of IL-17 and IFN-gamma, respectively. RESULTS Six subjects had STAT3 mutations affecting the DNA binding, Src homology 2, and transactivation domains, including 3 novel ones. Mutation-positive but not mutation-negative subjects with HIES exhibited reduced phosphorylation of STAT3 in response to cytokine stimulation, whereas pSTAT1 activation was unaffected. Both patient groups exhibited impaired T(H)17 responses, but whereas STAT3 mutations abrogated early steps in T(H)17 differentiation, the defects in patients with HIES with normal STAT3 affected more distal steps. CONCLUSION In this cohort of Turkish children with HIES, a majority had normal STAT3, implicating other targets in disease pathogenesis. Impaired T(H)17 responses were evident irrespective of the STAT3 mutation status, indicating that different genetic forms of HIES share a common functional outcome.
Cancer Research | 2010
Aik T. Ooi; Vei Mah; Derek W. Nickerson; Jennifer L. Gilbert; Vi Luan Ha; Ahmed E. Hegab; Steve Horvath; Mohammad Alavi; Erin L. Maresh; David Chia; Adam C. Gower; Marc E. Lenburg; Avrum Spira; Luisa M. Solis; Ignacio I. Wistuba; Tonya C. Walser; William D. Wallace; Steven M. Dubinett; Lee Goodglick; Brigitte N. Gomperts
Smoking is the most important known risk factor for the development of lung cancer. Tobacco exposure results in chronic inflammation, tissue injury, and repair. A recent hypothesis argues for a stem/progenitor cell involved in airway epithelial repair that may be a tumor-initiating cell in lung cancer and which may be associated with recurrence and metastasis. We used immunostaining, quantitative real-time PCR, Western blots, and lung cancer tissue microarrays to identify subpopulations of airway epithelial stem/progenitor cells under steady-state conditions, normal repair, aberrant repair with premalignant lesions and lung cancer, and their correlation with injury and prognosis. We identified a population of keratin 14 (K14)-expressing progenitor epithelial cells that was involved in repair after injury. Dysregulated repair resulted in the persistence of K14+ cells in the airway epithelium in potentially premalignant lesions. The presence of K14+ progenitor airway epithelial cells in NSCLC predicted a poor prognosis, and this predictive value was strongest in smokers, in which it also correlated with metastasis. This suggests that reparative K14+ progenitor cells may be tumor-initiating cells in this subgroup of smokers with NSCLC.
Stem Cells Translational Medicine | 2012
Ahmed E. Hegab; Vi Luan Ha; Daphne O. Darmawan; Jennifer L. Gilbert; Aik T. Ooi; Bharti Bisht; Derek W. Nickerson; Brigitte N. Gomperts
Basal cells and submucosal gland (SMG) duct cells have been isolated and shown to be stem/progenitor cell populations for the murine airway epithelium. However, methods for the isolation of basal and SMG duct cells from human airways have not been defined. We used an optimized two‐step enzyme digestion protocol to strip the surface epithelium from tracheal specimens separate from SMG cells, and we then sorted the basal and duct stem/progenitors using fluorescence‐activated cell sorting. We used nerve growth factor receptor, as well as a combination of CD166 and CD44, to sort basal cells and also used CD166 to isolate SMG duct cells. Sorted stem/progenitor cells were cultured to characterize their self‐renewal and differentiation ability. Both basal and SMG duct cells grew into spheres. Immunostaining of the spheres showed mostly dense spheres with little to no central lumen. The spheres expressed cytokeratins 5 and 14, with some mucus‐ and serous‐secreting cells. The sphere‐forming efficiency and the rate of growth of the spheres varied widely between patient samples and correlated with the degree of hyperplasia of the epithelium. We found that only aldehyde dehydrogenase (ALDH)hi basal and duct cells were capable of sphere formation. Global inhibition of ALDH, as well as specific inhibition of the ALDH2 isoform, inhibited self‐renewal of both basal and duct cells, thereby producing fewer and smaller spheres. In conclusion, we have developed methods to isolate basal and SMG duct cells from the surface epithelium and SMGs of human tracheas and have developed an in vitro model to characterize their self‐renewal and differentiation.
Respirology | 2012
Ahmed E. Hegab; Derek W. Nickerson; Vi Luan Ha; Daphne O. Darmawan; Brigitte N. Gomperts
Background and objective: The heterotopic syngeneic tracheal transplant mouse model is an acute hypoxic‐ischemic injury model that undergoes complete repair and regeneration. We hypothesized that the repair and regeneration process of the surface epithelium and submucosal glands would occur in a reproducible pattern that could be followed by the expression of specific markers of epithelial cell types.
Stem Cells and Development | 2014
Ahmed E. Hegab; Vi Luan Ha; Bharti Bisht; Daphne O. Darmawan; Aik T. Ooi; Kelvin X. Zhang; Manash K. Paul; Yeon Sun Kim; Jennifer L. Gilbert; Jackelyn A. Alva-Ornelas; Derek W. Nickerson; Brigitte N. Gomperts
Both basal and submucosal gland (SMG) duct stem cells of the airway epithelium are capable of sphere formation in the in vitro sphere assay, although the efficiency at which this occurs is very low. We sought to improve this efficiency of sphere formation by identifying subpopulations of airway basal stem cells (ABSC) and SMG duct cells based on their aldehyde dehydrogenase (ALDH) activity. ALDH(hi) ABSCs and SMG duct cells were highly enriched for the population of cells that could make spheres, while the co-culture of ALDH(hi) differentiated cells with the ALDH(hi) ABSCs increased their sphere-forming efficiency. Specific ALDH agonists and antagonists were used to show that airway specific ALDH isozymes are important for ABSC proliferation. Pathway analysis of gene expression profiling of ALDH(hi) and ALDH(lo) ABSCs revealed a significant upregulation of the arachidonic acid (AA) metabolism pathway in ALDH(hi) ABSCs. We confirmed the importance of this pathway in the metabolism of proliferating ALDH(hi) ABSCs using bioenergetics studies as well as agonists and antagonists of the AA pathway. These studies could lead to the development of novel strategies for altering ABSC proliferation in the airway epithelium.
Journal of Visualized Experiments | 2012
Ahmed E. Hegab; Vi Luan Ha; Derek W. Nickerson; Brigitte N. Gomperts
The large airways are directly in contact with the environment and therefore susceptible to injury from toxins and infectious agents that we breath in. The large airways therefore require an efficient repair mechanism to protect our bodies. This repair process occurs from stem cells in the airways and isolating these stem cells from the airways is important for understanding the mechanisms of repair and regeneration. It is also important for understanding abnormal repair that can lead to airway diseases. The goal of this method is to isolate a novel stem cell population from the mouse tracheal submucosal gland ducts and to place these cells in in vitro and in vivo model systems to identify the mechanisms of repair and regeneration of the submucosal glands. This production shows methods that can be used to isolate and assay the duct and basal stem cells from the large airways.This will allow us to study diseases of the airway, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease. Currently, there are no methods for isolation of submucosal gland duct cells and there are no in vivo models to study the regeneration of submucosal glands.
PLOS ONE | 2009
Derek W. Nickerson; Angela P. Presson; S.S. Weigt; Aric L. Gregson; John A. Belperio; Brigitte N. Gomperts
Background Circulating epithelial progenitor cells are important for repair of the airway epithelium in a mouse model of tracheal transplantation. We therefore hypothesized that circulating epithelial progenitor cells would also be present in normal human subjects and could be important for repair of the airway after lung injury. As lung transplantation is associated with lung injury, which is severe early on and exacerbated during episodes of infection and rejection, we hypothesized that circulating epithelial progenitor cell levels could predict clinical outcome following lung transplantation. Methodology/Principal Findings Quantitative Real Time PCR was performed to determine peripheral blood mRNA levels of cytokeratin 5, a previously characterized marker of circulating epithelial progenitor cells. Cytokeratin 5 levels were evaluated in healthy human subjects, in lung transplant recipients immediately post-transplant and serially thereafter, and in heart transplant recipients. All normal human subjects examined expressed cytokeratin 5 in their buffy coat in amounts that were not significantly influenced by age or gender. There was a profound, statistically significant decrease in cytokeratin 5 mRNA expression levels in lung transplant patients compared to healthy human subjects (p = 3.1×10−13) and to heart transplant recipients. There was a moderate negative correlation between improved circulating cytokeratin 5 mRNA levels in lung transplant recipients with recovering lung function, as measured by improved FEV1 values (rho = −0.39). Conclusions/Significance Levels of cytokeratin 5 mRNA, a proxy marker for circulating epithelial progenitor cells, inversely correlated with disease status in lung transplant recipients. It may therefore serve as a biomarker of the clinical outcome of lung transplant patients and potentially other patients with airway injury.
Immunity | 2011
Dipica Haribhai; Jason B. Williams; Shuang Jia; Derek W. Nickerson; Erica Schmitt; Brandon Edwards; Jennifer Ziegelbauer; Maryam Yassai; Shun-Hwa Li; Lance M. Relland; Petra Wise; Andrew Chen; Yu-Qian Zheng; Pippa Simpson; Jack Gorski; Nita H. Salzman; Martin J. Hessner; Talal A. Chatila; Calvin B. Williams
American Journal of Translational Research | 2012
Aik T. Ooi; Sonal Ram; Alan Kuo; Jennifer L. Gilbert; Weihong Yan; Matteo Pellegrini; Derek W. Nickerson; Talal A. Chatila; Brigitte N. Gomperts