Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Pellegrini is active.

Publication


Featured researches published by Matteo Pellegrini.


Nature | 2008

Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning

Shawn J. Cokus; Suhua Feng; Xiaoyu Zhang; Zugen Chen; Barry Merriman; Christian D. Haudenschild; Sriharsa Pradhan; Stanley F. Nelson; Matteo Pellegrini; Steven E. Jacobsen

Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.


Cell | 2006

Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis

Xiaoyu Zhang; Junshi Yazaki; Ambika Sundaresan; Shawn J. Cokus; Simon W. L. Chan; Huaming Chen; Ian R. Henderson; Paul Shinn; Matteo Pellegrini; Steve Jacobsen; Joseph R. Ecker

Cytosine methylation is important for transposon silencing and epigenetic regulation of endogenous genes, although the extent to which this DNA modification functions to regulate the genome is still unknown. Here we report the first comprehensive DNA methylation map of an entire genome, at 35 base pair resolution, using the flowering plant Arabidopsis thaliana as a model. We find that pericentromeric heterochromatin, repetitive sequences, and regions producing small interfering RNAs are heavily methylated. Unexpectedly, over one-third of expressed genes contain methylation within transcribed regions, whereas only approximately 5% of genes show methylation within promoter regions. Interestingly, genes methylated in transcribed regions are highly expressed and constitutively active, whereas promoter-methylated genes show a greater degree of tissue-specific expression. Whole-genome tiling-array transcriptional profiling of DNA methyltransferase null mutants identified hundreds of genes and intergenic noncoding RNAs with altered expression levels, many of which may be epigenetically controlled by DNA methylation.


Nature | 1999

A combined algorithm for genome-wide prediction of protein function

Edward M. Marcotte; Matteo Pellegrini; Michael J. Thompson; Todd O. Yeates; David Eisenberg

The availability of over 20 fully sequenced genomes has driven the development of new methods to find protein function and interactions. Here we group proteins by correlated evolution, correlated messenger RNA expression patterns and patterns of domain fusion to determine functional relationships among the 6,217 proteins of the yeast Saccharomyces cerevisiae. Using these methods, we discover over 93,000 pairwise links between functionally related yeast proteins. Links between characterized and uncharacterized proteins allow a general function to be assigned to more than half of the 2,557 previously uncharacterized yeast proteins. Examples of functional links are given for a protein family of previously unknown function, a protein whose human homologues are implicated in colon cancer and the yeast prion Sup35.


Nature | 2010

Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by Aid deficiency

Christian Popp; Wendy Dean; Suhua Feng; Shawn J. Cokus; Simon Andrews; Matteo Pellegrini; Steven E. Jacobsen; Wolf Reik

Epigenetic reprogramming including demethylation of DNA occurs in mammalian primordial germ cells (PGCs) and in early embryos, and is important for the erasure of imprints and epimutations, and the return to pluripotency. The extent of this reprogramming and its molecular mechanisms are poorly understood. We previously showed that the cytidine deaminases AID and APOBEC1 can deaminate 5-methylcytosine in vitro and in Escherichia coli, and in the mouse are expressed in tissues in which demethylation occurs. Here we profiled DNA methylation throughout the genome by unbiased bisulphite next generation sequencing in wild-type and AID-deficient mouse PGCs at embryonic day (E)13.5. Wild-type PGCs revealed marked genome-wide erasure of methylation to a level below that of methylation deficient (Np95-/-, also called Uhrf1-/-) embryonic stem cells, with female PGCs being less methylated than male ones. By contrast, AID-deficient PGCs were up to three times more methylated than wild-type ones; this substantial difference occurred throughout the genome, with introns, intergenic regions and transposons being relatively more methylated than exons. Relative hypermethylation in AID-deficient PGCs was confirmed by analysis of individual loci in the genome. Our results reveal that erasure of DNA methylation in the germ line is a global process, hence limiting the potential for transgenerational epigenetic inheritance. AID deficiency interferes with genome-wide erasure of DNA methylation patterns, indicating that AID has a critical function in epigenetic reprogramming and potentially in restricting the inheritance of epimutations in mammals.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Conservation and divergence of methylation patterning in plants and animals

Suhua Feng; Shawn J. Cokus; Xiaoyu Zhang; Pao Yang Chen; Magnolia Bostick; Mary G. Goll; Jonathan Hetzel; Jayati Jain; Steven H. Strauss; Marnie E. Halpern; Chinweike Ukomadu; Kirsten C. Sadler; Sriharsa Pradhan; Matteo Pellegrini; Steven E. Jacobsen

Cytosine DNA methylation is a heritable epigenetic mark present in many eukaryotic organisms. Although DNA methylation likely has a conserved role in gene silencing, the levels and patterns of DNA methylation appear to vary drastically among different organisms. Here we used shotgun genomic bisulfite sequencing (BS-Seq) to compare DNA methylation in eight diverse plant and animal genomes. We found that patterns of methylation are very similar in flowering plants with methylated cytosines detected in all sequence contexts, whereas CG methylation predominates in animals. Vertebrates have methylation throughout the genome except for CpG islands. Gene body methylation is conserved with clear preference for exons in most organisms. Furthermore, genes appear to be the major target of methylation in Ciona and honey bee. Among the eight organisms, the green alga Chlamydomonas has the most unusual pattern of methylation, having non-CG methylation enriched in exons of genes rather than in repeats and transposons. In addition, the Dnmt1 cofactor Uhrf1 has a conserved function in maintaining CG methylation in both transposons and gene bodies in the mouse, Arabidopsis, and zebrafish genomes.


Nature | 2010

Relationship between nucleosome positioning and DNA methylation

Ramakrishna K. Chodavarapu; Suhua Feng; Yana V. Bernatavichute; Pao-Yang Chen; Hume Stroud; Yanchun Yu; Jonathan Hetzel; Frank Kuo; Jin Kim; Shawn J. Cokus; David Casero; María Bernal; Peter Huijser; Amander T. Clark; Ute Krämer; Sabeeha S. Merchant; Xiaoyu Zhang; Steven E. Jacobsen; Matteo Pellegrini

Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana using massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base resolution, we identified 10-base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than flanking DNA. These results indicate that nucleosome positioning influences DNA methylation patterning throughout the genome and that DNA methyltransferases preferentially target nucleosome-bound DNA. We also observed similar trends in human nucleosomal DNA, indicating that the relationships between nucleosomes and DNA methyltransferases are conserved. Finally, as has been observed in animals, nucleosomes were highly enriched on exons, and preferentially positioned at intron–exon and exon–intron boundaries. RNA polymerase II (Pol II) was also enriched on exons relative to introns, consistent with the hypothesis that nucleosome positioning regulates Pol II processivity. DNA methylation is also enriched on exons, consistent with the targeting of DNA methylation to nucleosomes, and suggesting a role for DNA methylation in exon definition.


Cell Stem Cell | 2008

Promoter CpG Methylation Contributes to ES Cell Gene Regulation in Parallel with Oct4/Nanog, PcG Complex, and Histone H3 K4/K27 Trimethylation

Shaun D. Fouse; Yin Shen; Matteo Pellegrini; Steve W. Cole; Alexander Meissner; Leander Van Neste; Rudolf Jaenisch; Guoping Fan

We report here genome-wide mapping of DNA methylation patterns at proximal promoter regions in mouse embryonic stem (mES) cells. Most methylated genes are differentiation associated and repressed in mES cells. By contrast, the unmethylated gene set includes many housekeeping and pluripotency genes. By crossreferencing methylation patterns to genome-wide mapping of histone H3 lysine (K) 4/27 trimethylation and binding of Oct4, Nanog, and Polycomb proteins on gene promoters, we found that promoter DNA methylation is the only marker of this group present on approximately 30% of genes, many of which are silenced in mES cells. In demethylated mutant mES cells, we saw upregulation of a subset of X-linked genes and developmental genes that are methylated in wild-type mES cells, but lack either H3K4 and H3K27 trimethylation or association with Polycomb, Oct4, or Nanog. Our data suggest that in mES cells promoter methylation represents a unique epigenetic program that complements other regulatory mechanisms to ensure appropriate gene expression.


Genome Biology | 2004

Prolinks: a database of protein functional linkages derived from coevolution

Peter M. Bowers; Matteo Pellegrini; Michael J. Thompson; Joe Fierro; Todd O. Yeates; David Eisenberg

The advent of whole-genome sequencing has led to methods that infer protein function and linkages. We have combined four such algorithms (phylogenetic profile, Rosetta Stone, gene neighbor and gene cluster) in a single database - Prolinks - that spans 83 organisms and includes 10 million high-confidence links. The Proteome Navigator tool allows users to browse predicted linkage networks interactively, providing accompanying annotation from public databases. The Prolinks database and the Proteome Navigator tool are available for use online at http://dip.doe-mbi.ucla.edu/pronav.


Journal of Biological Chemistry | 2012

Three Acyltransferases and Nitrogen-responsive Regulator Are Implicated in Nitrogen Starvation-induced Triacylglycerol Accumulation in Chlamydomonas

Nanette R. Boyle; Mark Dudley Page; Bensheng Liu; Ian K. Blaby; David Casero; Janette Kropat; Shawn J. Cokus; Anne Hong-Hermesdorf; Johnathan Shaw; Steven J. Karpowicz; Sean D. Gallaher; Shannon L. Johnson; Christoph Benning; Matteo Pellegrini; Arthur R. Grossman; Sabeeha S. Merchant

Background: Nitrogen-starvation and other stresses induce triacylglycerol (TAG) accumulation in algae, but the relevant enzymes and corresponding signal transduction pathways are unknown. Results: RNA-Seq and genetic analysis revealed three acyltransferases that contribute to TAG accumulation. Conclusion: TAG synthesis results from recycling of membrane lipids and also by acylation of DAG. Significance: The genes are potential targets for manipulating TAG hyperaccumulation. Algae have recently gained attention as a potential source for biodiesel; however, much is still unknown about the biological triggers that cause the production of triacylglycerols. We used RNA-Seq as a tool for discovering genes responsible for triacylglycerol (TAG) production in Chlamydomonas and for the regulatory components that activate the pathway. Three genes encoding acyltransferases, DGAT1, DGTT1, and PDAT1, are induced by nitrogen starvation and are likely to have a role in TAG accumulation based on their patterns of expression. DGAT1 and DGTT1 also show increased mRNA abundance in other TAG-accumulating conditions (minus sulfur, minus phosphorus, minus zinc, and minus iron). Insertional mutants, pdat1-1 and pdat1-2, accumulate 25% less TAG compared with the parent strain, CC-4425, which demonstrates the relevance of the trans-acylation pathway in Chlamydomonas. The biochemical functions of DGTT1 and PDAT1 were validated by rescue of oleic acid sensitivity and restoration of TAG accumulation in a yeast strain lacking all acyltransferase activity. Time course analyses suggest than a SQUAMOSA promoter-binding protein domain transcription factor, whose mRNA increases precede that of lipid biosynthesis genes like DGAT1, is a candidate regulator of the nitrogen deficiency responses. An insertional mutant, nrr1-1, accumulates only 50% of the TAG compared with the parental strain in nitrogen-starvation conditions and is unaffected by other nutrient stresses, suggesting the specificity of this regulator for nitrogen-deprivation conditions.


PLOS ONE | 2008

Genome-Wide Association of Histone H3 Lysine Nine Methylation with CHG DNA Methylation in Arabidopsis thaliana

Yana V. Bernatavichute; Xiaoyu Zhang; Shawn J. Cokus; Matteo Pellegrini; Steven E. Jacobsen

Methylation of histone H3 lysine 9 (H3K9) is a hallmark of transcriptional silencing in many organisms. In Arabidopsis thaliana, dimethylation of H3K9 (H3K9m2) is important in the silencing of transposons and in the control of DNA methylation. We constructed a high-resolution genome-wide map of H3K9m2 methylation by using chromatin immunoprecipitation coupled with whole genome Roche Nimblegen microarrays (ChIP-chip). We observed a very high coincidence between H3K9m2 and CHG methylation (where H is either A,T or C) throughout the genome. The coding regions of genes that are associated exclusively with methylation in a CG context did not contain H3K9m2. In addition, we observed two distinct patterns of H3K9m2. Transposons and other repeat elements present in the euchromatic arms contained small islands of H3K9m2 present at relatively low levels. In contrast, pericentromeric/centromeric regions of Arabidopsis chromosomes contained long, rarely interrupted blocks of H3K9m2 present at much higher average levels than seen in the chromosome arms. These results suggest a complex interplay between H3K9m2 and different types of DNA methylation and suggest that distinct mechanisms control H3K9m2 in different compartments of the genome.

Collaboration


Dive into the Matteo Pellegrini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Casero

University of California

View shared research outputs
Top Co-Authors

Avatar

Shawn J. Cokus

University of California

View shared research outputs
Top Co-Authors

Avatar

Marco Morselli

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suhua Feng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge