Derek W. Trobaugh
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Derek W. Trobaugh.
Nature | 2014
Derek W. Trobaugh; Christina L. Gardner; Chengqun Sun; Andrew D. Haddow; Eryu Wang; Elik Chapnik; Alexander Mildner; Scott C. Weaver; Kate D. Ryman; William B. Klimstra
Currently, there is little evidence for a notable role of the vertebrate microRNA (miRNA) system in the pathogenesis of RNA viruses. This is primarily attributed to the ease with which these viruses mutate to disrupt recognition and growth suppression by host miRNAs. Here we report that the haematopoietic-cell-specific miRNA miR-142-3p potently restricts the replication of the mosquito-borne North American eastern equine encephalitis virus in myeloid-lineage cells by binding to sites in the 3′ non-translated region of its RNA genome. However, by limiting myeloid cell tropism and consequent innate immunity induction, this restriction directly promotes neurologic disease manifestations characteristic of eastern equine encephalitis virus infection in humans. Furthermore, the region containing the miR-142-3p binding sites is essential for efficient virus infection of mosquito vectors. We propose that RNA viruses can adapt to use antiviral properties of vertebrate miRNAs to limit replication in particular cell types and that this restriction can lead to exacerbation of disease severity.
American Journal of Obstetrics and Gynecology | 2015
Avraham Bayer; Elizabeth Delorme-Axford; Christie Sleigher; Teryl K. Frey; Derek W. Trobaugh; William B. Klimstra; Lori A. Emert-Sedlak; Thomas E. Smithgall; Paul R. Kinchington; Stephen Vadia; Stephanie Seveau; Jon P. Boyle; Carolyn B. Coyne; Yoel Sadovsky
OBJECTIVE Primary human trophoblasts were previously shown to be resistant to viral infection, and able to confer this resistance to nontrophoblast cells. Can trophoblasts protect nontrophoblastic cells from infection by viruses or other intracellular pathogens that are implicated in perinatal infection? STUDY DESIGN Isolated primary term human trophoblasts were cultured for 48-72 hours. Diverse nonplacental human cell lines (U2OS, human foreskin fibroblast, TZM-bl, MeWo, and Caco-2) were preexposed to either trophoblast conditioned medium, nonconditioned medium, or miR-517-3p for 24 hours. Cells were infected with several viral and nonviral pathogens known to be associated with perinatal infections. Cellular infection was defined and quantified by plaque assays, luciferase assays, microscopy, and/or colonization assays. Differences in infection were assessed by Student t test or analysis of variance with Bonferroni correction. RESULTS Infection by rubella and other togaviruses, human immunodeficiency virus-1, and varicella zoster was attenuated in cells preexposed to trophoblast-conditioned medium (P < .05), and a partial effect by the chromosome 19 microRNA miR-517-3p on specific pathogens. The conditioned medium had no effect on infection by Toxoplasma gondii or Listeria monocytogenes. CONCLUSION Our findings indicate that medium conditioned by primary human trophoblasts attenuates viral infection in nontrophoblastic cells. Our data point to a trophoblast-specific antiviral effect that may be exploited therapeutically.
Trends in Molecular Medicine | 2017
Derek W. Trobaugh; William B. Klimstra
microRNAs (miRNAs) are non-coding RNAs that regulate many processes within a cell by manipulating protein levels through direct binding to mRNA and influencing translation efficiency, or mRNA abundance. Recent evidence demonstrates that miRNAs can also affect RNA virus replication and pathogenesis through direct binding to the RNA virus genome or through virus-mediated changes in the host transcriptome. Here, we review the current knowledge on the interaction between RNA viruses and cellular miRNAs. We also discuss how cell and tissue-specific expression of miRNAs can directly affect viral pathogenesis. Understanding the role of cellular miRNAs during viral infection may lead to the identification of novel mechanisms to block RNA virus replication or cell-specific regulation of viral vector targeting.
Virus Research | 2015
Jennifer L. Hyde; Rubing Chen; Derek W. Trobaugh; Michael S. Diamond; Scott C. Weaver; William B. Klimstra; Jeffrey Wilusz
Abstract The non-coding regions found at the 5′ and 3′ ends of alphavirus genomes regulate viral gene expression, replication, translation and virus–host interactions, which have significant implications for viral evolution, host range, and pathogenesis. The functions of these non-coding regions are mediated by a combination of linear sequence and structural elements. The capped 5′ untranslated region (UTR) contains promoter elements, translational regulatory sequences that modulate dependence on cellular translation factors, and structures that help to avoid innate immune defenses. The polyadenylated 3′ UTR contains highly conserved sequence elements for viral replication, binding sites for cellular miRNAs that determine cell tropism, host range, and pathogenesis, and conserved binding regions for a cellular protein that influences viral RNA stability. Nonetheless, there are additional conserved elements in non-coding regions of the virus (e.g., the repeated sequence elements in the 3′ UTR) whose function remains obscure. Thus, key questions remain as to the function of these short yet influential untranslated segments of alphavirus RNAs.
European Journal of Immunology | 2010
Derek W. Trobaugh; Liyan Yang; Francis A. Ennis; Sharone Green
Memory cross‐reactive CD8+ T‐cell responses may induce protection or immunopathology upon secondary viral challenge. To elucidate the potential role of T cells in sequential flavivirus infection, we characterized cross‐reactive CD4+ and CD8+ T‐cell responses between attenuated and pathogenic Japanese encephalitis virus (JEV) and pathogenic West Nile virus (WNV). A previously reported WNV NS4b CD8+ T‐cell epitope and its JEV variant elicited CD8+ T‐cell responses in both JEV‐ and WNV‐infected mice. The peptide variant homologous to the immunizing virus induced greater cytokine secretion and activated higher frequencies of epitope‐specific CD8+ T cells. However, there was a virus‐dependent, peptide variant‐independent pattern of cytokine secretion; the IFNγ+‐to‐IFNγ+TNFα+ CD8+ T‐cell ratio was greater in JEV‐ than in WNV‐infected mice. Despite similarities in viral burden for pathogenic WNV and JEV viruses, CD8+ T cells from pathogenic JEV‐immunized mice exhibited functional and phenotypic profiles similar to those seen for the attenuated JEV strain. Patterns of killer cell lectin‐like receptor G1 (KLRG1) and CD127 expression differed by virus type, with a rapid expansion and contraction of short‐lived effector cells in JEV infection and persistence of high levels of short‐lived effector cells in WNV infection. Such cross‐reactive T‐cell responses to primary infection may affect the outcomes of sequential flavivirus infections.
Expert Review of Vaccines | 2014
Derek W. Trobaugh; Kate D. Ryman; William B. Klimstra
Eastern equine encephalitis virus (EEEV) is a highly neurovirulent mosquito-borne alphavirus that causes severe morbidity and mortality upon human infection. Recent emergence of EEEV into nonendemic regions in the USA and Panama demonstrates the need for the development of an effective EEEV vaccine for licensure for human use. The current EEEV vaccine is available to only at-risk laboratory workers but is poorly immunogenic and requires multiple boosters. In this editorial, we summarize recent developments in understanding alphavirus virulence mechanisms that could be utilized to rationally design a live attenuated vaccine against EEEV or other alphaviruses.
Current tropical medicine reports | 2015
Derek W. Trobaugh; Sharone Green
West Nile virus, a mosquito-borne flavivirus, first emerged in the Western Hemisphere in 1999. Although the majority of infections are asymptomatic, West Nile virus (WNV) causes significant morbidity and mortality in a minority of individuals who develop neuroinvasive disease, in particular the elderly and immunocompromised. Research in animal models has demonstrated interactions between WNV and the innate and adaptive immune system, some of which protect the host and others which are deleterious. Studies of disease pathogenesis in humans are less numerous, largely due to the complexities of WNV epidemiology. Human studies that have been done support the notion that innate and adaptive immune responses are delicately balanced and may help or harm the host. Further human investigations are needed to characterize beneficial responses to WNV with the goal of such research leading to therapeutics and effective vaccines in order to control this emerging viral disease.
Current Opinion in Virology | 2017
Derek W. Trobaugh; William B. Klimstra
Alphaviruses are medically important mosquito-borne viruses that cause a range of diseases in humans from febrile illness to arthritis or encephalitis. The innate immune response functions to suppress virus replication through upregulation of antiviral molecules and contributes to development of the adaptive immune response. Myeloid cells act as master regulators of virus infection by initiating both the innate and adaptive immune responses. Alphaviruses are capable of antagonizing individual components of these responses to increase replicative fitness in vivo. However, recently, studies have demonstrated that some alphaviruses avoid myeloid cell replication altogether to achieve a similar effect. In this review, we summarize how alphaviruses evade myeloid cell infection and individual inductive mechanisms, thereby limiting the activation of the innate immune response.
Science | 2014
Jennifer L. Hyde; Christina L. Gardner; Taishi Kimura; James P. White; Gai Liu; Derek W. Trobaugh; Cheng Huang; Marco Tonelli; Slobodan Paessler; Kiyoshi Takeda; William B. Klimstra; Gaya K. Amarasinghe; Michael S. Diamond
mSphere | 2018
Christopher M. Weiss; Derek W. Trobaugh; Chengqun Sun; Tiffany M. Lucas; Michael S. Diamond; Kate D. Ryman; William B. Klimstra