Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek Wong is active.

Publication


Featured researches published by Derek Wong.


JAMA | 2014

Clinical Exome Sequencing for Genetic Identification of Rare Mendelian Disorders

Hane Lee; Joshua L. Deignan; Naghmeh Dorrani; Samuel P. Strom; Sibel Kantarci; Fabiola Quintero-Rivera; Kingshuk Das; Traci Toy; Bret Harry; Michael Yourshaw; Michelle Fox; Brent L. Fogel; Julian A. Martinez-Agosto; Derek Wong; Vivian Y. Chang; Perry B. Shieh; Christina G.S. Palmer; Katrina M. Dipple; Wayne W. Grody; Eric Vilain; Stanley F. Nelson

IMPORTANCE Clinical exome sequencing (CES) is rapidly becoming a common molecular diagnostic test for individuals with rare genetic disorders. OBJECTIVE To report on initial clinical indications for CES referrals and molecular diagnostic rates for different indications and for different test types. DESIGN, SETTING, AND PARTICIPANTS Clinical exome sequencing was performed on 814 consecutive patients with undiagnosed, suspected genetic conditions at the University of California, Los Angeles, Clinical Genomics Center between January 2012 and August 2014. Clinical exome sequencing was conducted as trio-CES (both parents and their affected child sequenced simultaneously) to effectively detect de novo and compound heterozygous variants or as proband-CES (only the affected individual sequenced) when parental samples were not available. MAIN OUTCOMES AND MEASURES Clinical indications for CES requests, molecular diagnostic rates of CES overall and for phenotypic subgroups, and differences in molecular diagnostic rates between trio-CES and proband-CES. RESULTS Of the 814 cases, the overall molecular diagnosis rate was 26% (213 of 814; 95% CI, 23%-29%). The molecular diagnosis rate for trio-CES was 31% (127 of 410 cases; 95% CI, 27%-36%) and 22% (74 of 338 cases; 95% CI, 18%-27%) for proband-CES. In cases of developmental delay in children (<5 years, n = 138), the molecular diagnosis rate was 41% (45 of 109; 95% CI, 32%-51%) for trio-CES cases and 9% (2 of 23, 95% CI, 1%-28%) for proband-CES cases. The significantly higher diagnostic yield (P value = .002; odds ratio, 7.4 [95% CI, 1.6-33.1]) of trio-CES was due to the identification of de novo and compound heterozygous variants. CONCLUSIONS AND RELEVANCE In this sample of patients with undiagnosed, suspected genetic conditions, trio-CES was associated with higher molecular diagnostic yield than proband-CES or traditional molecular diagnostic methods. Additional studies designed to validate these findings and to explore the effect of this approach on clinical and economic outcomes are warranted.


American Journal of Medical Genetics Part A | 2011

Genotype–phenotype analysis of the branchio‐oculo‐facial syndrome

Jeff M. Milunsky; Tom M. Maher; Geping Zhao; Zhenyuan Wang; John B. Mulliken; David Chitayat; Michele Clemens; Heather J. Stalker; Mislen Bauer; Michele Burch; Sébastien Chénier; Michael L. Cunningham; Arlene V. Drack; Sandra Janssens; Audrey Karlea; Regan Klatt; Usha Kini; Ophir D. Klein; Augusta M. A. Lachmeijer; André Mégarbané; Nancy J. Mendelsohn; Wendy S. Meschino; Geert Mortier; Sandhya Parkash; C. Renai Ray; Angharad M. Roberts; Amy E. Roberts; Willie Reardon; Rhonda E. Schnur; Rosemarie Smith

Branchio‐oculo‐facial syndrome (BOFS; OMIM#113620) is a rare autosomal dominant craniofacial disorder with variable expression. Major features include cutaneous and ocular abnormalities, characteristic facies, renal, ectodermal, and temporal bone anomalies. Having determined that mutations involving TFAP2A result in BOFS, we studied a total of 30 families (41 affected individuals); 26/30 (87%) fulfilled our cardinal diagnostic criteria. The original family with the 3.2 Mb deletion including the TFAP2A gene remains the only BOFS family without the typical CL/P and the only family with a deletion. We have identified a hotspot region in the highly conserved exons 4 and 5 of TFAP2A that harbors missense mutations in 27/30 (90%) families. Several of these mutations are recurrent. Mosaicism was detected in one family. To date, genetic heterogeneity has not been observed. Although the cardinal criteria for BOFS have been based on the presence of each of the core defects, an affected family member or thymic remnant, we documented TFAP2A mutations in three (10%) probands in our series without a classic cervical cutaneous defect or ectopic thymus. Temporal bone anomalies were identified in 3/5 patients investigated. The occurrence of CL/P, premature graying, coloboma, heterochromia irides, and ectopic thymus, are evidence for BOFS as a neurocristopathy. Intrafamilial clinical variability can be marked. Although there does not appear to be mutation‐specific genotype–phenotype correlations at this time, more patients need to be studied. Clinical testing for TFAP2A mutations is now available and will assist geneticists in confirming the typical cases or excluding the diagnosis in atypical cases.


The Journal of Pediatrics | 2014

Significant Hepatic Involvement in patients with Ornithine Transcarbamylase Deficiency

Renata C. Gallagher; Christina Lam; Derek Wong; Stephen D. Cederbaum; Ronald J. Sokol

OBJECTIVE To determine the frequency of significant liver injury and acute liver failure (ALF) in patients with ornithine transcarbamylase deficiency (OTCD), the most common urea cycle defect. STUDY DESIGN In this historical cohort study, charts of 71 patients with OTCD at 2 centers were reviewed to assess the prevalence of ALF (international normalized ratio [INR] ≥2.0), liver dysfunction (INR 1.5-1.99), and hepatocellular injury (aspartate aminotransferase/alanine aminotransferase ≥250 IU/L). RESULTS More than one-half (57%) of the 49 patients with symptomatic OTCD had liver involvement; 29% met the criteria for ALF, 20% had liver dysfunction, and 8% had isolated hepatocellular injury. The prevalence of ALF was highest in the patients with more severe OTCD, including those with markedly elevated ammonia levels (>1000 μmol/L). Some patients with severe liver involvement (INR ≥2.0 and aspartate aminotransferase/alanine aminotransferase >1000 IU/L) had only moderate hyperammonemia (ammonia 100-400 μmol/L). ALF was the initial presenting symptom of OTCD in at least 3 of 49 symptomatic patients with OTCD. CONCLUSION Episodes of hepatocellular injury, liver dysfunction, and ALF were identified in a high proportion of children with symptomatic OTCD. The more severely affected patients had a higher likelihood of ALF. The diagnosis of a urea cycle defect should be considered in patients with unexplained ALF, liver dysfunction, or hepatocellular injury.


Molecular Genetics and Metabolism | 2012

Peanut consumption increases levels of plasma very long chain fatty acids in humans

Christina Lam; Derek Wong; Stephen D. Cederbaum; Bennie Lim; Yong Qu

Peanut consumption has been suspected of raising plasma very long chain fatty acid (VLCFA) levels in humans. The effect of peanut consumption on VLCFAs was studied in six human subjects. After 3 to 4h of peanut butter ingestion, plasma C26:0 and C26:0/C22:0 were found to be significantly elevated to levels seen in patients with peroxisomal disorders. These levels returned to normal within 12h. Peanut consumption needs to be accounted for when interpreting VLCFAs.


Genetics in Medicine | 2015

Blood ammonia and glutamine as predictors of hyperammonemic crises in patients with urea cycle disorder

Brendan Lee; George A. Diaz; William J. Rhead; Uta Lichter-Konecki; Annette Feigenbaum; Susan A. Berry; Cindy Le Mons; J. Bartley; Nicola Longo; Sandesh C.S. Nagamani; William E. Berquist; Renata C. Gallagher; Dennis Bartholomew; Cary O. Harding; Mark S. Korson; Shawn E. McCandless; Wendy Smith; Stephen D. Cederbaum; Derek Wong; J. Lawrence Merritt; Andreas Schulze; Gerard Vockley; David Kronn; Roberto T. Zori; Marshall Summar; Douglas A. Milikien; Miguel Marino; Dion F. Coakley; Masoud Mokhtarani; Bruce F. Scharschmidt

Purpose:The aim of this study was to examine predictors of ammonia exposure and hyperammonemic crises in patients with urea cycle disorders.Methods:The relationships between fasting ammonia, daily ammonia exposure, and hyperammonemic crises were analyzed in >100 patients with urea cycle disorders.Results:Fasting ammonia correlated strongly with daily ammonia exposure (r = 0.764; P < 0.001). For patients with fasting ammonia concentrations <0.5 upper limit of normal (ULN), 0.5 to <1.0 ULN, and ≥1.0 ULN, the probability of a normal average daily ammonia value was 87, 60, and 39%, respectively, and 10.3, 14.1, and 37.0% of these patients, respectively, experienced ≥1 hyperammonemic crisis over 12 months. Time to first hyperammonemic crisis was shorter (P = 0.008) and relative risk (4.5×; P = 0.011) and rate (~5×, P = 0.006) of hyperammonemic crises were higher in patients with fasting ammonia ≥1.0 ULN vs. <0.5ULN; relative risk was even greater (20×; P = 0.009) in patients ≥6 years old. A 10- or 25-µmol/l increase in ammonia exposure increased the relative risk of a hyperammonemic crisis by 50 and >200% (P < 0.0001), respectively. The relationship between ammonia and hyperammonemic crisis risk seemed to be independent of treatment, age, urea cycle disorder subtype, dietary protein intake, or blood urea nitrogen. Fasting glutamine correlated weakly with daily ammonia exposure assessed as 24-hour area under the curve and was not a significant predictor of hyperammonemic crisis.Conclusion:Fasting ammonia correlates strongly and positively with daily ammonia exposure and with the risk and rate of hyperammonemic crises, suggesting that patients with urea cycle disorder may benefit from tight ammonia control.Genet Med 17 7, 561–568.


Molecular Genetics and Metabolism | 2011

Fatal infantile lactic acidosis and a novel homozygous mutation in the SUCLG1 gene: A mitochondrial DNA depletion disorder

Linda M. Randolph; Hollie A. Jackson; Jing Wang; Hiroyuki Shimada; Pedro A. Sanchez-Lara; Derek Wong; Lee-Jun C. Wong; Richard G. Boles

Mitochondrial DNA (mtDNA) depletion syndromes are autosomal recessive conditions in which the mtDNA copy number is greatly decreased in affected tissues. The encephalomyopathic group of these syndromes comprise mutations in SUCLA2 and SUCLG1 subunits [1]. In this report, we describe a patient with fatal infantile lactic acidosis associated with mutations in the SUCLG1 gene and mtDNA depletion. Histological and enzymatic abnormalities in skeletal muscle support the diagnosis of this recently described mitochondrial disorder. This case is unique in that prenatal imaging suggested the diagnosis and that the confirmatory molecular diagnosis was established at 2 weeks of age. We describe prenatal MRI and neonatal laboratory disturbances that can point the clinician toward consideration of this diagnosis when treating infantile lactic acidosis.


Genetics in Medicine | 2015

Erratum: Blood ammonia and glutamine as predictors of hyperammonemic crises in patients with urea cycle disorder (Genetics in Medicine (2014))

Brendan Lee; George A. Diaz; William J. Rhead; Uta Lichter-Konecki; Annette Feigenbaum; Susan A. Berry; Cindy Le Mons; J. Bartley; Nicola Longo; Sandesh C.S. Nagamani; William E. Berquist; Renata C. Gallagher; Dennis Bartholomew; Cary O. Harding; Mark S. Korson; Shawn E. McCandless; Wendy Smith; Stephen D. Cederbaum; Derek Wong; J. Lawrence Merritt; Andreas Schulze; Jerry Vockley; David Kronn; Roberto T. Zori; Marshall Summar; Douglas A. Milikien; Miguel Marino; Dion F. Coakley; Masoud Mokhtarani; Bruce F. Scharschmidt

Purpose:The aim of this study was to examine predictors of ammonia exposure and hyperammonemic crises in patients with urea cycle disorders.Methods:The relationships between fasting ammonia, daily ammonia exposure, and hyperammonemic crises were analyzed in >100 patients with urea cycle disorders.Results:Fasting ammonia correlated strongly with daily ammonia exposure (r = 0.764; P < 0.001). For patients with fasting ammonia concentrations <0.5 upper limit of normal (ULN), 0.5 to <1.0 ULN, and ≥1.0 ULN, the probability of a normal average daily ammonia value was 87, 60, and 39%, respectively, and 10.3, 14.1, and 37.0% of these patients, respectively, experienced ≥1 hyperammonemic crisis over 12 months. Time to first hyperammonemic crisis was shorter (P = 0.008) and relative risk (4.5×; P = 0.011) and rate (~5×, P = 0.006) of hyperammonemic crises were higher in patients with fasting ammonia ≥1.0 ULN vs. <0.5ULN; relative risk was even greater (20×; P = 0.009) in patients ≥6 years old. A 10- or 25-µmol/l increase in ammonia exposure increased the relative risk of a hyperammonemic crisis by 50 and >200% (P < 0.0001), respectively. The relationship between ammonia and hyperammonemic crisis risk seemed to be independent of treatment, age, urea cycle disorder subtype, dietary protein intake, or blood urea nitrogen. Fasting glutamine correlated weakly with daily ammonia exposure assessed as 24-hour area under the curve and was not a significant predictor of hyperammonemic crisis.Conclusion:Fasting ammonia correlates strongly and positively with daily ammonia exposure and with the risk and rate of hyperammonemic crises, suggesting that patients with urea cycle disorder may benefit from tight ammonia control.Genet Med 17 7, 561–568.


Human Mutation | 2016

ALG1-CDG: Clinical and Molecular Characterization of 39 Unreported Patients.

Bobby G. Ng; Sergey A. Shiryaev; Daisy Rymen; Erik Eklund; Kimiyo Raymond; Martin Kircher; Jose E. Abdenur; Füsun Alehan; Alina T. Midro; Michael J. Bamshad; Rita Barone; Gerard T. Berry; Jane E. Brumbaugh; Kati J. Buckingham; Katie Clarkson; F. Sessions Cole; Shawn O'Connor; Gregory M. Cooper; Rudy Van Coster; Laurie Demmer; Luisa Diogo; Alexander Fay; Can Ficicioglu; Agata Fiumara; William A. Gahl; Rebecca Ganetzky; Himanshu Goel; Lyndsay A. Harshman; Miao He; Jaak Jaeken

Congenital disorders of glycosylation (CDG) arise from pathogenic mutations in over 100 genes leading to impaired protein or lipid glycosylation. ALG1 encodes a β1,4 mannosyltransferase that catalyzes the addition of the first of nine mannose moieties to form a dolichol‐lipid linked oligosaccharide intermediate required for proper N‐linked glycosylation. ALG1 mutations cause a rare autosomal recessive disorder termed ALG1‐CDG. To date 13 mutations in 18 patients from 14 families have been described with varying degrees of clinical severity. We identified and characterized 39 previously unreported cases of ALG1‐CDG from 32 families and add 26 new mutations. Pathogenicity of each mutation was confirmed based on its inability to rescue impaired growth or hypoglycosylation of a standard biomarker in an alg1‐deficient yeast strain. Using this approach we could not establish a rank order comparison of biomarker glycosylation and patient phenotype, but we identified mutations with a lethal outcome in the first two years of life. The recently identified protein‐linked xeno‐tetrasaccharide biomarker, NeuAc‐Gal‐GlcNAc2, was seen in all 27 patients tested. Our study triples the number of known patients and expands the molecular and clinical correlates of this disorder.


Neurogenetics | 2015

Adult-onset glutaric aciduria type I presenting with white matter abnormalities and subependymal nodules

Tyler Mark Pierson; Mani Nezhad; Matthew Tremblay; Richard A. Lewis; Derek Wong; Noriko Salamon; Nancy Sicotte

A 55-year-old female presented with a 6-year history of paresthesias, incontinence, spasticity, and gait abnormalities. Neuroimaging revealed white matter abnormalities associated with subependymal nodules. Biochemical evaluation noted increased serum C5-DC glutarylcarnitines and urine glutaric and 3-hydroxyglutaric acids. Evaluation of the glutaryl-CoA dehydrogenase (GCDH) gene revealed compound heterozygosity consisting of a novel variant (c.1219C>G; p.Leu407Val) and pathogenic mutation (c.848delT; p.L283fs). Together, these results were consistent with a diagnosis of adult-onset type I glutaric aciduria.


American Journal of Medical Genetics Part A | 2013

First report of a de novo 18q11.2 microdeletion including GATA6 associated with complex congenital heart disease and renal abnormalities

Peter H. Bui; Naghmeh Dorrani; Derek Wong; Gregory Perens; Katrina M. Dipple; Fabiola Quintero-Rivera

Deletions of the long arm of chromosome 18 have been previously reported in many patients. Most cases involve the more distal regions of the long arm (18q21.1‐>qter). However, proximal interstitial deletions involving 18q11.2 are extremely rare. Here we report on a 14‐month‐old female with a 4.7 Mb (19,667,062–24,401,876 hg19) de novo interstitial deletion within chromosomal band 18q11.2, which includes GATA6 and 24 other RefSeq genes. The clinical features of our patient include complex congenital heart defects, a double outlet right ventricle, a subaortic ventricular septal defect, D‐malposed great arteries, an atrial septal defect, a dysplastic aortic valve and patent ductus arteriosus. In addition, she had renal anomalies—a duplicated collecting system on the left and mild right hydronephrosis. These heart and renal defects are not reported in other patients with 18q proximal interstitial deletions. Heterozygous point mutations in GATA6, encoding for a zinc finger transcription factor, have been shown to cause congenital heart defects. Given the well‐established biological role of GATA6 in cardiac development, a deletion of GATA6 is very likely responsible for our patients complex congenital heart defects. This is the smallest and most proximal 18q11.2 deletion involving GATA6 that is associated with complex congenital heart disease and renal anomalies.

Collaboration


Dive into the Derek Wong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina Lam

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brendan Lee

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Kronn

New York Medical College

View shared research outputs
Top Co-Authors

Avatar

Dennis Bartholomew

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

George A. Diaz

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge