Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen D. Cederbaum is active.

Publication


Featured researches published by Stephen D. Cederbaum.


Neurology | 1997

Outcome of pyruvate dehydrogenase deficiency treated with ketogenic diets: Studies in patients with identical mutations

Isaiah D. Wexler; Sullia G. Hemalatha; Judy McConnell; N. R M Buist; H. H M Dahl; Susan A. Berry; Stephen D. Cederbaum; Mulchand S. Patel; Douglas S. Kerr

Inborn errors of the pyruvate dehydrogenase complex (PDC) are associated with lactic acidosis, neuroanatomic defects, developmental delay, and early death. PDC deficiency is a clinically heterogeneous disorder, with most mutations located in the coding region of the X-linked α subunit of the first catalytic component, pyruvate dehydrogenase (E1). Treatment of E1 deficiency has included cofactor replacement, activation of PDC with dichloroacetate, and ketogenic diets. In this report, we describe the outcome of ketogenic diet treatment in seven boys with E1 deficiency. These patients were divided into two groups based on their mutations (R349H, three patients; and R234G, four patients, two sibling pairs). All seven patients received ketogenic diets with varying degrees of carbohydrate restriction. Clinical outcome was compared within each group and between siblings as related to the intensity and duration of dietary intervention. Subjects who either had the diet initiated earlier in life or who were placed on greater carbohydrate restriction had increased longevity and improved mental development. Based on the improved outcomes of patients with identical mutations, it appears that a nearly carbohydrate-free diet initiated shortly after birth may be useful in the treatment of E1 deficiency.


Journal of Inherited Metabolic Disease | 1998

The human arginases and arginase deficiency.

R. Iyer; C. P. Jenkinson; J. G. Vockley; R. M. Kern; W. W. Grody; Stephen D. Cederbaum

Arginase is the final enzyme in the urea cycle. Its deficiency is the least frequently described disorder of this cycle. It results primarily in elevated blood arginine, and less frequently in either persistent or acute elevations in blood ammonia. This appears to be due to a second arginase locus, expressed primarily in the kidney, which can be recruited to compensate, in part, for the deficiency of liver arginase. The liver arginase gene structure permitted study of the molecular pathology of patients with the disorder and the results of these studies and the inferences about the protein structure are presented. The conserved regions among all arginases allowed the cloning of AII, the second arginase isoform. It has been localized to the mitochondrion and is thought to be involved in ornithine biosynthesis. It shares the major conserved protein sequences, and structural features of liver arginase gene are also conserved. When AI and AII from various species are compared, it appears that the two diverged some time prior to the evolution of amphibians. The evidence for the role of AII in nitric oxide and polyamine metabolism is presented and this appears consonant with the data on the tissue distribution.


Archives of Biochemistry and Biophysics | 1987

Regulation of mRNA levels for five urea cycle enzymes in rat liver by diet, cyclic AMP, and glucocorticoids.

Sidney M. Morris; Carole L. Moncman; Katherine Deml Rand; George J. Dizikes; Stephen D. Cederbaum; William E. O'Brien

Adaptive changes in levels of urea cycle enzymes are largely coordinate in both direction and magnitude. In order to determine the extent to which these adaptive responses reflect coordinate regulatory events at the pretranslational level, measurements of hybridizable mRNA levels for all five urea cycle enzymes were carried out for rats subjected to various dietary regimens and hormone treatments. Changes in relative abundance of the mRNAs in rats with varying dietary protein intakes are comparable to reported changes in enzyme activities, indicating that the major response to diet occurs at the pretranslational level for all five enzymes and that this response is largely coordinate. In contrast to the dietary changes, variable responses of mRNA levels were observed following intraperitoneal injections of dibutyryl cAMP and dexamethasone. mRNAs for only three urea cycle enzymes increased in response to dexamethasone. Levels of all five mRNAs increased severalfold in response to dibutyryl cAMP at both 1 and 5 h after injection, except for ornithine transcarbamylase mRNA which showed a response at 1 h but no response at 5 h. Combined effects of dexamethasone and dibutyryl cAMP were additive for only two urea cycle enzyme mRNAs, suggesting independent regulatory pathways for these two hormones. Transcription run-on assays revealed that transcription of at least two of the urea cycle enzyme genes--carbamylphosphate synthetase I and argininosuccinate synthetase--is stimulated approximately four- to fivefold by dibutyryl cAMP within 30 min. The varied hormonal responses indicate that regulatory mechanisms for modulating enzyme concentration are not identical for each of the enzymes in the pathway.


Molecular Genetics and Metabolism | 2009

A Delphi clinical practice protocol for the management of very long chain acyl-CoA dehydrogenase deficiency

Georgianne L. Arnold; Johan L.K. Van Hove; Debra Freedenberg; Arnold W. Strauss; Nicola Longo; Barbara K. Burton; Cheryl Garganta; Can Ficicioglu; Stephen D. Cederbaum; Cary O. Harding; Richard G. Boles; Dietrich Matern; Pranesh Chakraborty; Annette Feigenbaum

INTRODUCTION Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is a disorder of oxidation of long chain fat, and can present as cardiomyopathy or fasting intolerance in the first months to years of life, or as myopathy in later childhood to adulthood. Expanded newborn screening has identified a relatively high incidence of this disorder (1:31,500), but there is a dearth of evidence-based outcomes data to guide the development of clinical practice protocols. This consensus protocol is intended to assist clinicians in the diagnosis and management of screen-positive newborns for VLCAD deficiency until evidence-based guidelines are available. METHOD The Oxford Centre for Evidence-based Medicine system was used to grade the literature review and create recommendations graded from A (evidence level of randomized clinical trials) to D (expert opinion). Delphi was used as the consensus tool. A panel of 14 experts (including clinicians, diagnostic laboratory directors and researchers) completed three rounds of survey questions and had a face-to-face meeting. RESULT Panelists reviewed the initial evaluation of the screen-positive infant, diagnostic testing and management of diagnosed patients. Grade C and D consensus recommendations were made in each of these three areas. The panel did not reach consensus on all issues, particularly in the dietary management of asymptomatic infants diagnosed by newborn screening.


The Journal of Pediatrics | 1976

The chondro-osseous dysplasia of adenosine deaminase deficiency with severe combined immunodeficiency.

Stephen D. Cederbaum; Illka Kaitila; David L. Rimoin; E. Richard Stiehm

Three children, two of them siblings, with severe combined immunodeficiency and adenosine deaminase deficiency died within the first six months of life from the complications of acute bacterial infections. Subtle radiographic abnormalities were seen at the costochondral junctions, at the apophysis of the iliac bones, and in the vertebral bodies. At autopsy, the thymus showed evidence of early differentiation and, in one instance, aborted Hassalls corpuscles. Histologic study of the bone disclosed lack of organized cartilage columnar formation, large lacuni containing hypertrophied cells, and lack of trabecular formation with uninterrupted areas of calcified cartilage. These changes are distinctly different from those observed in the metaphyseal chondrodysplasias or in other chondrodystrophies.


Journal of Immunology | 2010

Arginase I Suppresses IL-12/IL-23p40–Driven Intestinal Inflammation during Acute Schistosomiasis

De’Broski R. Herbert; Tatyana Orekov; Roloson A; Ilies M; Charles Perkins; William E. O'Brien; Stephen D. Cederbaum; Christianson Dw; Nives Zimmermann; Marc E. Rothenberg; F D Finkelman

Alternatively activated macrophages prevent lethal intestinal pathology caused by worm ova in mice infected with the human parasite Schistosoma mansoni through mechanisms that are currently unclear. This study demonstrates that arginase I (Arg I), a major product of IL-4– and IL-13–induced alternatively activated macrophages, prevents cachexia, neutrophilia, and endotoxemia during acute schistosomiasis. Specifically, Arg I-positive macrophages promote TGF-β production and Foxp3 expression, suppress Ag-specific T cell proliferation, and limit Th17 differentiation. S. mansoni-infected Arg I-deficient bone marrow chimeras develop a marked accumulation of worm ova within the ileum but impaired fecal egg excretion compared with infected wild-type bone marrow chimeras. Worm ova accumulation in the intestines of Arg I-deficient bone marrow chimeras was associated with intestinal hemorrhage and production of molecules associated with classical macrophage activation (increased production of IL-6, NO, and IL-12/IL-23p40), but whereas inhibition of NO synthase-2 has marginal effects, IL-12/IL-23p40 neutralization abrogates both cachexia and intestinal inflammation and reduces the number of ova within the gut. Thus, macrophage-derived Arg I protects hosts against excessive tissue injury caused by worm eggs during acute schistosomiasis by suppressing IL-12/IL-23p40 production and maintaining the Treg/Th17 balance within the intestinal mucosa.


The Journal of Pediatrics | 1974

Combined immunodeficiency presenting as the Letterer-Siwe syndrome

Stephen D. Cederbaum; Gen Niwayama; E. Richard Stiehm; Robert C. Neerhout; Arthur J. Ammann; William Berman

Four infants with skin rash, hepatosplenomegaly, lymphocytosis, eosinophilis, and histiocytic infiltration of the lymph nodes and skin are described; in each of these infants an initial diagnosis of the Letterer-Siwe syndrome was made. Postmortem findings of thymic dysplasia and poorly differentiated, lymphopenic peripheral lympoid tissue in each of the four infants, as well as antimortem clinical findings in one, established a diagnosis of severe combined immunodeficiency. From these and similar cases in the literature, we postulate that the Letterer-Siwe syndrome may not be an unusual presentation of combined immunodeficiency. Appropriate immunologic studies will help to differentiate the two disorders.


Journal of Neuroscience Research | 2001

Expression of arginase isozymes in mouse brain

Hong Yu; Ramaswamy K. Iyer; Rita M. Kern; Williams Rodriguez; Wayne W. Grody; Stephen D. Cederbaum

The two forms of arginase (AI and AII) in man, identical in enzymatic function, are encoded in separate genes and are expressed differentially in various tissues. AI is expressed predominantly in the liver cytosol and is thought to function primarily to detoxify ammonia as part of the urea cycle. AII, in contrast, is predominantly mitochondrial, is more widely expressed, and is thought to function primarily to produce ornithine. Ornithine is a precursor in the synthesis of proline, glutamate, and polyamines. This study was undertaken to explore the cellular and regional distribution of AI and AII expression in brain using in situ hybridization and immunohistochemistry. AI and AII were detected only in neurons and not in glial cells. AI presented stronger expression than AII, but AII was generally coexpressed with AI in most cells studied. Expression was particularly high in the cerebral cortex, cerebellum, pons, medulla, and spinal cord neurons. Glutamic acid decarboxylase 65 and glutamic acid decarboxylase 67, postulated to be related to the risk of glutamate excitotoxic and/or γ‐aminobutyric acid inhibitoxic injury, were similarly ubiquitous in their expression and generally paralleled arginase expression patterns, especially in cerebral cortex, hippocampus, cerebellum, pons, medulla, and spinal cord. This study showed that AI is expressed in the mouse brain, and more strongly than AII, and sheds light on the anatomic basis for the arginine→ornithine→glutamate→GABA pathway. J. Neurosci. Res. 66:406–422, 2001.


Biochemical and Biophysical Research Communications | 1986

Isolation of human liver arginase cdna and demonstration of nonhomology between the two human arginase genes

George J. Dizikes; Wayne W. Grody; Rita M. Kern; Stephen D. Cederbaum

A human liver cDNA library was screened by colony hybridization with a rat liver arginase cDNA. The number of positive clones detected was in agreement with the estimated abundance of arginase message in liver, and the identities of several of these clones were verified by hybrid-select translation, immunoprecipitation, and competition by purified arginase. The largest of these human liver arginase cDNAs was then used to detect arginase message on northern blots at levels consistent with the activities of liver arginase in the tissues and cells studied. The absence of a hybridization signal with mRNA from a cell line expressing only human kidney arginase demonstrated the lack of homology between the two human arginase genes and indicated considerable evolutionary divergence between these two loci.


Hepatology | 2013

AMMONIA CONTROL AND NEUROCOGNITIVE OUTCOME AMONG UREA CYCLE DISORDER PATIENTS TREATED WITH GLYCEROL PHENYLBUTYRATE

George A. Diaz; Lauren Krivitzky; Masoud Mokhtarani; William J. Rhead; J. Bartley; Annette Feigenbaum; Nicola Longo; William E. Berquist; Susan A. Berry; Renata C. Gallagher; Uta Lichter-Konecki; Dennis Bartholomew; Cary O. Harding; Stephen D. Cederbaum; Shawn E. McCandless; Wendy Smith; Gerald Vockley; Stephen A. Bart; Mark S. Korson; David Kronn; Roberto T. Zori; J. Lawrence Merritt; Sandesh C.S. Nagamani; Joseph Mauney; Cynthia LeMons; Klara Dickinson; Tristen Moors; Dion F. Coakley; Bruce F. Scharschmidt; Brendan Lee

Glycerol phenylbutyrate is under development for treatment of urea cycle disorders (UCDs), rare inherited metabolic disorders manifested by hyperammonemia and neurological impairment. We report the results of a pivotal Phase 3, randomized, double‐blind, crossover trial comparing ammonia control, assessed as 24‐hour area under the curve (NH3‐AUC0‐24hr), and pharmacokinetics during treatment with glycerol phenylbutyrate versus sodium phenylbutyrate (NaPBA) in adult UCD patients and the combined results of four studies involving short‐ and long‐term glycerol phenylbutyrate treatment of UCD patients ages 6 and above. Glycerol phenylbutyrate was noninferior to NaPBA with respect to ammonia control in the pivotal study, with mean (standard deviation, SD) NH3‐AUC0‐24hr of 866 (661) versus 977 (865) μmol·h/L for glycerol phenylbutyrate and NaPBA, respectively. Among 65 adult and pediatric patients completing three similarly designed short‐term comparisons of glycerol phenylbutyrate versus NaPBA, NH3‐AUC0‐24hr was directionally lower on glycerol phenylbutyrate in each study, similar among all subgroups, and significantly lower (P < 0.05) in the pooled analysis, as was plasma glutamine. The 24‐hour ammonia profiles were consistent with the slow‐release behavior of glycerol phenylbutyrate and better overnight ammonia control. During 12 months of open‐label glycerol phenylbutyrate treatment, average ammonia was normal in adult and pediatric patients and executive function among pediatric patients, including behavioral regulation, goal setting, planning, and self‐monitoring, was significantly improved. Conclusion: Glycerol phenylbutyrate exhibits favorable pharmacokinetics and ammonia control relative to NaPBA in UCD patients, and long‐term glycerol phenylbutyrate treatment in pediatric UCD patients was associated with improved executive function (ClinicalTrials.gov NCT00551200, NCT00947544, NCT00992459, NCT00947297). (HEPATOLOGY 2012)

Collaboration


Dive into the Stephen D. Cederbaum's collaboration.

Top Co-Authors

Avatar

Wayne W. Grody

University of California

View shared research outputs
Top Co-Authors

Avatar

Rita M. Kern

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brendan Lee

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek Wong

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge