Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derese Getnet is active.

Publication


Featured researches published by Derese Getnet.


Nature | 2014

A draft map of the human proteome

Min Sik Kim; Sneha M. Pinto; Derese Getnet; Raja Sekhar Nirujogi; Srikanth S. Manda; Raghothama Chaerkady; Dhanashree S. Kelkar; Ruth Isserlin; Shobhit Jain; Joji Kurian Thomas; Babylakshmi Muthusamy; Pamela Leal-Rojas; Praveen Kumar; Nandini A. Sahasrabuddhe; Lavanya Balakrishnan; Jayshree Advani; Bijesh George; Santosh Renuse; Lakshmi Dhevi N. Selvan; Arun H. Patil; Vishalakshi Nanjappa; Aneesha Radhakrishnan; Samarjeet Prasad; Tejaswini Subbannayya; Rajesh Raju; Manish Kumar; Sreelakshmi K. Sreenivasamurthy; Arivusudar Marimuthu; Gajanan Sathe; Sandip Chavan

The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, resulted in identification of proteins encoded by 17,294 genes accounting for approximately 84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream open reading frames. This large human proteome catalogue (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.


Journal of Immunology | 2007

Cutting Edge: An In Vivo Requirement for STAT3 Signaling in TH17 Development and TH17-Dependent Autoimmunity

Timothy J. Harris; Joseph F. Grosso; Hung-Rong Yen; Hong Xin; Marcin Kortylewski; Emilia Albesiano; Edward L. Hipkiss; Derese Getnet; Monica V. Goldberg; Charles H. Maris; Franck Housseau; Hua Yu; Drew M. Pardoll; Charles G. Drake

STAT3 activation has been observed in several autoimmune diseases, suggesting that STAT3-mediated pathways promote pathologic immune responses. We provide in vivo evidence that the fundamental role of STAT3 signaling in autoimmunity relates to its absolute requirement for generating TH17 T cell responses. We show that STAT3 is a master regulator of this pathogenic T cell subtype, acting at multiple levels in vivo, including TH17 T cell differentiation and cytokine production, as well as induction of RORγt and the IL-23R. Neither naturally occurring TH17 cells nor TH17-dependent autoimmunity occurs when STAT3 is ablated in CD4 cells. Furthermore, ablation of STAT3 signaling in CD4 cells results in increased TH1 responses, indicating that STAT3 signaling skews TH responses away from the TH1 pathway and toward the TH17 pathway. Thus, STAT3 is a candidate target for TH17-dependent autoimmune disease immunotherapy that could selectively inhibit pathogenic immune pathways.


Journal of Clinical Investigation | 2007

LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems

Joseph F. Grosso; Cristin C. Kelleher; Timothy J. Harris; Charles H. Maris; Edward L. Hipkiss; Angelo M. De Marzo; Robert A. Anders; George J. Netto; Derese Getnet; Tullia C. Bruno; Monica V. Goldberg; Drew M. Pardoll; Charles G. Drake

Lymphocyte activation gene-3 (LAG-3) is a cell-surface molecule with diverse biologic effects on T cell function. We recently showed that LAG-3 signaling is important in CD4+ regulatory T cell suppression of autoimmune responses. Here, we demonstrate that LAG-3 maintains tolerance to self and tumor antigens via direct effects on CD8+ T cells using 2 murine systems. Naive CD8+ T cells express low levels of LAG-3, and expression increases upon antigen stimulation. Our data show increased levels of LAG-3 protein on antigen-specific CD8+ T cells within antigen-expressing organs or tumors. In vivo antibody blockade of LAG-3 or genetic ablation of the Lag-3 gene resulted in increased accumulation and effector function of antigen-specific CD8+ T cells within organs and tumors that express their cognate antigen. Most notably, combining LAG-3 blockade with specific antitumor vaccination resulted in a significant increase in activated CD8+ T cells in the tumor and disruption of the tumor parenchyma. A major component of this effect was CD4 independent and required LAG-3 expression by CD8+ T cells. Taken together, these data demonstrate a direct role for LAG-3 on CD8+ T cells and suggest that LAG-3 blockade may be a potential cancer treatment.


Science | 2009

Eos Mediates Foxp3-Dependent Gene Silencing in CD4+ Regulatory T Cells

Fan Pan; Hong Yu; Eric V. Dang; Joseph Barbi; Xiaoyu Pan; Joseph F. Grosso; Dinili Jinasena; Sudarshana M. Sharma; Erin M. McCadden; Derese Getnet; Charles G. Drake; Jun O. Liu; Michael C. Ostrowski; Drew M. Pardoll

Treg Responses to Eos CD4+ regulatory T cells (Tregs) are critical for keeping our immune system in check: They prevent immune responses from getting out of hand and keep autoimmunity at bay. By activating the expression of some genes and turning off expression of others, the master regulatory transcription factor of Tregs, Foxp3, endows these cells with the appropriate gene expression program to mediate their suppressive effects. Pan et al. (p. 1142, published online 20 August) now demonstrate that the transcription factor Eos is selectively required for Foxp3-mediated gene suppression in mice. Genes normally suppressed by Foxp3 in Tregs remained “on” when Eos expression was suppressed, whereas genes activated by Foxp3 were unaffected. Treg function was also affected by Eos suppression. With half their genetic program disrupted, these cells resembled an intermediate between Tregs and conventional CD4+ T cells—unable to suppress immune responses properly and partially responsive to T cell–activating stimulation. A transcription factor required for gene suppression in regulatory T cells is identified. CD4+ regulatory T cells (Tregs) maintain immunological self-tolerance and immune homeostasis by suppressing aberrant or excessive immune responses. The core genetic program of Tregs and their ability to suppress pathologic immune responses depends on the transcription factor Foxp3. Despite progress in understanding mechanisms of Foxp3-dependent gene activation, the molecular mechanism of Foxp3-dependent gene repression remains largely unknown. We identified Eos, a zinc-finger transcription factor of the Ikaros family, as a critical mediator of Foxp3-dependent gene silencing in Tregs. Eos interacts directly with Foxp3 and induces chromatin modifications that result in gene silencing in Tregs. Silencing of Eos in Tregs abrogates their ability to suppress immune responses and endows them with partial effector function, thus demonstrating the critical role that Eos plays in Treg programming.


Molecular Immunology | 2010

A role for the transcription factor Helios in human CD4+CD25+ regulatory T cells

Derese Getnet; Joseph F. Grosso; Monica V. Goldberg; Timothy J. Harris; Hung-Rong Yen; Tullia C. Bruno; Nicholas M. Durham; Edward L. Hipkiss; Kristin J. Pyle; Satoshi Wada; Fan Pan; Drew M. Pardoll; Charles G. Drake

Relative upregulation of the Ikaros family transcription factor Helios in natural regulatory T cells (Tregs) has been reported by several groups. However, a role for Helios in regulatory T cells has not yet been described. Here, we show that Helios is upregulated in CD4(+)CD25(+) regulatory T cells. Chromatin-immunoprecipitation (ChIP) experiments indicated that Helios binds to the FoxP3 promoter. These data were further corroborated by experiments showing that knocking-down Helios with siRNA oligonucleotides results in down-regulation of FoxP3. Functionally, we found that suppression of Helios message in CD4(+)CD25(+) T cells significantly attenuates their suppressive function. Taken together, these data suggest that Helios may play an important role in regulatory T cell function and support the concept that Helios may be a novel target to manipulate Treg activity in a clinical setting.


Journal of Immunology | 2009

Tc17 CD8 T Cells: Functional Plasticity and Subset Diversity

Hung-Rong Yen; Timothy J. Harris; Satoshi Wada; Joseph F. Grosso; Derese Getnet; Monica V. Goldberg; Kai Li Liang; Tullia C. Bruno; Kristin J. Pyle; Siaw Li Chan; Robert A. Anders; Cornelia L. Trimble; Adam J. Adler; Tzou-Yien Lin; Drew M. Pardoll; Ching Tai Huang; Charles G. Drake

IL-17-secreting CD8 T cells (Tc17) have been described in several settings, but little is known regarding their functional characteristics. While Tc1 cells produced IFN-γ and efficiently killed targets, Tc17 cells lacked lytic function in vitro. Interestingly, the small numbers of IFN-γ-positive or IL-17/IFN-γ-double-positive cells generated under Tc17 conditions also lacked lytic activity and expressed a similar pattern of cell surface proteins to IL-17-producing cells. As is the case for Th17 (CD4) cells, STAT3 is important for Tc17 polarization, both in vitro and in vivo. Adoptive transfer of highly purified, Ag-specific IL-17-secreting Tc17 cells into Ag-bearing hosts resulted in near complete conversion to an IFN-γ-secreting phenotype and substantial pulmonary pathology, demonstrating functional plasticity. Tc17 also accumulated to a greater extent than did Tc1 cells, suggesting that adoptive transfer of CD8 T cells cultured in Tc17 conditions may have therapeutic potential for diseases in which IFN-γ-producing cells are desired.


Cancer Research | 2009

Cyclophosphamide Augments Antitumor Immunity: Studies in an Autochthonous Prostate Cancer Model

Satoshi Wada; Kiyoshi Yoshimura; Edward L. Hipkiss; Timothy J. Harris; Hung-Rong Yen; Monica V. Goldberg; Joseph F. Grosso; Derese Getnet; Angelo M. DeMarzo; George J. Netto; Robert A. Anders; Drew M. Pardoll; Charles G. Drake

To study the immune response to prostate cancer, we developed an autochthonous animal model based on the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse in which spontaneously developing tumors express influenza hemagglutinin as a unique, tumor-associated antigen. Our prior studies in these animals showed immunologic tolerance to hemagglutinin, mirroring the clinical situation in patients with cancer who are generally nonresponsive to their disease. We used this physiologically relevant animal model to assess the immunomodulatory effects of cyclophosphamide when administered in combination with an allogeneic, cell-based granulocyte-macrophage colony-stimulating factor-secreting cancer immunotherapy. Through adoptive transfer of prostate/prostate cancer-specific CD8 T cells as well as through studies of the endogenous T-cell repertoire, we found that cyclophosphamide induced a marked augmentation of the antitumor immune response. This effect was strongly dependent on both the dose and the timing of cyclophosphamide administration. Mechanistic studies showed that immune augmentation by cyclophosphamide was associated with a transient depletion of regulatory T cells in the tumor draining lymph nodes but not in the peripheral circulation. Interestingly, we also noted effects on dendritic cell phenotype; low-dose cyclophosphamide was associated with increased expression of dendritic cell maturation markers. Taken together, these data clarify the dose, timing, and mechanism of action by which immunomodulatory cyclophosphamide can be translated to a clinical setting in a combinatorial cancer treatment strategy.


Journal of Immunology | 2009

Functionally Distinct LAG-3 and PD-1 Subsets on Activated and Chronically Stimulated CD8 T Cells

Joseph F. Grosso; Monica V. Goldberg; Derese Getnet; Tullia C. Bruno; Hung-Rong Yen; Kristin J. Pyle; Edward L. Hipkiss; Dario A. A. Vignali; Drew M. Pardoll; Charles G. Drake

Lymphocyte Activation Gene-3 (LAG-3) is a transmembrane protein that binds MHC class II, enhances regulatory T cell activity, and negatively regulates cellular proliferation, activation, and homeostasis of T cells. Programmed Death 1 (PD-1) also negatively regulates T cell function. LAG-3 and PD-1 are both transiently expressed on CD8 T cells that have been stimulated during acute activation. However, both LAG-3 and PD-1 remain on CD8 T cells at high levels after stimulation within tolerizing environments. Our previous data demonstrated that blockade of either LAG-3 or PD-1 using mAb therapy in combination with vaccination restores the function of tolerized Ag-specific CD8 T cells in models of self and tumor tolerance. It is unclear whether tolerized CD8 T cells coexpress PD-1 and LAG-3 or whether PD-1 and LAG-3 mark functionally distinct populations of CD8 T cells. In this study, we describe three populations of CD8 T cells activated under tolerizing conditions based on LAG-3 and PD-1 staining, each with distinct phenotypic and functional characteristics. From a mechanistic perspective, both Ag concentration and proinflammatory signals control the expression of LAG-3 and PD-1 phenotypes on CD8 T cells under activating and tolerizing conditions. These results imply that signaling through the PD-1 and LAG-3 pathways have distinct functional consequences to CD8 T cells under tolerizing conditions and manipulation of both Ag and cytokine signaling can influence CD8 tolerance through LAG-3 and PD-1.


PLOS ONE | 2012

Phenotypic and Functional Properties of Helios+ Regulatory T Cells

Daniel J. Zabransky; Christopher Nirschl; Nicholas M. Durham; Ben V. Park; Christina M. Ceccato; Tullia C. Bruno; Ada J. Tam; Derese Getnet; Charles G. Drake

Helios, an Ikaros family transcription factor, is preferentially expressed at the mRNA and protein level in regulatory T cells. Helios expression previously appeared to be restricted to thymic-derived Treg. Consistent with recent data, we show here that Helios expression is inducible in vitro under certain conditions. To understand phenotypic and functional differences between Helios+ and Helios− Treg, we profiled cell-surface markers of FoxP3+ Treg using unmanipulated splenocytes. We found that CD103 and GITR are expressed at high levels on a subset of Helios+ Treg and that a Helios+ Treg population could be significantly enriched by FACS sorting using these two markers. Quantitative real-time PCR (qPCR) analysis revealed increased TGF-β message in Helios+ Treg, consistent with the possibility that this population possesses enhanced regulatory potential. In tumor-bearing mice, we found that Helios+ Treg were relatively over-represented in the tumor-mass, and BrdU studies showed that, in vivo, Helios+ Treg proliferated more than Helios− Treg. We hypothesized that Helios-enriched Treg might exert increased suppressive effects. Using in vitro suppression assays, we show that Treg function correlates with the absolute number of Helios+ cells in culture. Taken together, these data show that Helios+ Treg represent a functional subset with associated CD103 and GITR expression.


The Prostate | 2008

Radiotherapy Augments the Immune Response to Prostate Cancer in a Time-Dependent Manner

Timothy J. Harris; Edward L. Hipkiss; Scott Borzillary; Satoshi Wada; Joseph F. Grosso; Hung-Rong Yen; Derese Getnet; Tullia C. Bruno; Monica V. Goldberg; Drew M. Pardoll; Theodore L. DeWeese; Charles G. Drake

Cancer immunotherapy refers to an array of strategies intended to treat progressive tumors by augmenting a patients anti‐tumor immune response. As immunotherapy is eventually incorporated into oncology treatment paradigms, it is important to understand how these therapies interact with established cancer treatments such as chemotherapy or Radiotherapy (RT). To address this, we utilized a well‐established, autochthonous murine model of prostate cancer to test whether RT could augment (or diminish) the CD4 T cell response to a tumor vaccine.

Collaboration


Dive into the Derese Getnet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Drew M. Pardoll

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akhilesh Pandey

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge