Deron R. Herr
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deron R. Herr.
Annual Review of Pharmacology and Toxicology | 2010
Ji Woong Choi; Deron R. Herr; Kyoko Noguchi; Yun C. Yung; Chang-Wook Lee; Tetsuji Mutoh; Mu-En Lin; Siew T. Teo; Kristine E. Park; Alycia N. Mosley; Jerold Chun
Lysophosphatidic acid (LPA) is a small, ubiquitous phospholipid that acts as an extracellular signaling molecule by binding to and activating at least five known G protein-coupled receptors (GPCRs): LPA(1)-LPA(5). They are encoded by distinct genes named LPAR1-LPAR5 in humans and Lpar1-Lpar5 in mice. The biological roles of LPA are diverse and include developmental, physiological, and pathophysiological effects. This diversity is mediated by broad and overlapping expression patterns and multiple downstream signaling pathways activated by cognate LPA receptors. Studies using cloned receptors and genetic knockout mice have been instrumental in uncovering the significance of this signaling system, notably involving basic cellular processes as well as multiple organ systems such as the nervous system. This has further provided valuable proof-of-concept data to support LPA receptors and LPA metabolic enzymes as targets for the treatment of medically important diseases that include neuropsychiatric disorders, neuropathic pain, infertility, cardiovascular disease, inflammation, fibrosis, and cancer.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Ji Woong Choi; Shannon E. Gardell; Deron R. Herr; Richard Rivera; Chang-Wook Lee; Kyoko Noguchi; Siew T. Teo; Yun C. Yung; Melissa Lu; Grace Kennedy; Jerold Chun
Sphingosine 1-phosphate (S1P), a lysophospholipid, has gained relevance to multiple sclerosis through the discovery of FTY720 (fingolimod), recently approved as an oral treatment for relapsing forms of multiple sclerosis. Its mechanism of action is thought to be immunological through an active phosphorylated metabolite, FTY720-P, that resembles S1P and alters lymphocyte trafficking through receptor subtype S1P1. However, previously reported expression and in vitro studies of S1P receptors suggested that direct CNS effects of FTY720 might theoretically occur through receptor modulation on neurons and glia. To identify CNS cells functionally contributing to FTY720 activity, genetic approaches were combined with cellular and molecular analyses. These studies relied on the functional assessment, based on clinical score, of conditional null mouse mutants lacking S1P1 in CNS cell lineages and challenged by experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. All conditional null mutants displayed WT lymphocyte trafficking that responded normally to FTY720. In marked contrast, EAE was attenuated and FTY720 efficacy was lost in CNS mutants lacking S1P1 on GFAP-expressing astrocytes but not on neurons. In situ hybridization studies confirmed that astrocyte loss of S1P1 was the key alteration in functionally affected mutants. Reductions in EAE clinical scores were paralleled by reductions in demyelination, axonal loss, and astrogliosis. Receptor rescue and pharmacological experiments supported the loss of S1P1 on astrocytes through functional antagonism by FTY720-P as a primary FTY720 mechanism. These data identify nonimmunological CNS mechanisms of FTY720 efficacy and implicate S1P signaling pathways within the CNS as targets for multiple sclerosis therapies.
Prostaglandins & Other Lipid Mediators | 2010
Mu-En Lin; Deron R. Herr; Jerold Chun
Lysophosphatidic acid (LPA), a water-soluble phospholipid, has gained significant attention in recent years since the discovery that it acts as a potent signaling molecule with wide-ranging effects on many different target tissues. There are currently five identified G protein-coupled receptors for LPA and more are undergoing validation. The complexity of the expression pattern and signaling properties of LPA receptors results in multiple influences on developmental, physiological, and pathological processes. This review provides a summary of LPA receptor signaling and current views on the potential involvement of this pathway in human diseases that include cardiovascular, cancer, neuropathic pain, neuropsychiatric disorders, reproductive disorders, and fibrosis. The involvement of LPA signaling in these processes implicates multiple, potential drug targets including LPA receptor subtypes and LPA metabolizing enzymes. Modulation of LPA signaling may thus provide therapeutic inroads for the treatment of human disease.
Current Opinion in Pharmacology | 2009
Kyoko Noguchi; Deron R. Herr; Tetsuji Mutoh; Jerold Chun
Lysophosphatidic acid (LPA), a bioactive phospholipid, and its family of cognate G protein-coupled receptors have demonstrated roles in many biological functions in the nervous system. To date, five LPA receptors have been identified, and additional receptors may exist. Most of these receptors have been genetically deleted in mice toward identifying biological and medically relevant roles. In addition, small molecule agonists and antagonists have been reported. Here we review recent data on the nervous system functions of LPA signaling, and summarize data on reported agonists and antagonists of LPA receptors.
The EMBO Journal | 2006
Connie Chao; Deron R. Herr; Jerold Chun; Yang Xu
Mouse p53 is phosphorylated at Ser18 and Ser23 after DNA damage. To determine whether these two phosphorylation events have synergistic functions in activating p53 responses, we simultaneously introduced Ser18/23 to Ala mutations into the endogenous p53 locus in mice. While partial defects in apoptosis are observed in p53S18A and p53S23A thymocytes exposed to IR, p53‐dependent apoptosis is essentially abolished in p53S18/23A thymocytes, indicating that these two events have critical and synergistic roles in activating p53‐dependent apoptosis. In addition, p53S18/23A, but not p53S18A, could completely rescue embryonic lethality of Xrcc4−/− mice that is caused by massive p53‐dependent neuronal apoptosis. However, certain p53‐dependent functions, including G1/S checkpoint and cellular senescence, are partially retained in p53S18/23A cells. While p53S18A mice are not cancer prone, p53S18/23A mice developed a spectrum of malignancies distinct from p53S23A and p53−/− mice. Interestingly, Xrcc4−/−p53S18/23A mice fail to develop tumors like the pro‐B cell lymphomas uniformly developed in Xrcc4−/− p53−/− animals, but exhibit developmental defects typical of accelerated ageing. Therefore, Ser18 and Ser23 phosphorylation is important for p53‐dependent suppression of tumorigenesis in certain physiological context.
Development | 2003
Deron R. Herr; Henrik Fyrst; Van H. Phan; Karie Heinecke; Rana Georges; Greg L. Harris; Julie D. Saba
Sphingosine-1-phosphate is a sphingolipid metabolite that regulates cell proliferation, migration and apoptosis through specific signaling pathways. Sphingosine-1-phosphate lyase catalyzes the conversion of sphingosine-1-phosphate to ethanolamine phosphate and a fatty aldehyde. We report the cloning of the Drosophila sphingosine-1-phosphate lyase gene (Sply) and demonstrate its importance for adult muscle development and integrity, reproduction and larval viability. Sply expression is temporally regulated, with onset of expression during mid-embryogenesis. Sply null mutants accumulate both phosphorylated and unphosphorylated sphingoid bases and exhibit semi-lethality, increased apoptosis in developing embryos, diminished egg-laying, and gross pattern abnormalities in dorsal longitudinal flight muscles. These defects are corrected by restoring Sply expression or by introduction of a suppressor mutation that diminishes sphingolipid synthesis and accumulation of sphingolipid intermediates. This is the first demonstration of novel and complex developmental pathologies directly linked to a disruption of sphingolipid catabolism in metazoans.
The Journal of Neuroscience | 2007
Deron R. Herr; Nicolas Grillet; Martin Schwander; Richard Rivera; Ulrich Müller; Jerold Chun
Hearing requires the transduction of vibrational forces by specialized epithelial cells in the cochlea known as hair cells. The human ear contains a finite number of terminally differentiated hair cells that, once lost by noise-induced damage or toxic insult, can never be regenerated. We report here that sphingosine 1-phosphate (S1P) signaling, mainly via activation of its cognate receptor S1P2, is required for the maintenance of vestibular and cochlear hair cells in vivo. Two S1P receptors, S1P2 and S1P3, were found to be expressed in the cochlea by reverse transcription-PCR and in situ hybridization. Mice that are null for both these receptors uniformly display progressive cochlear and vestibular defects with hair cell loss, resulting in complete deafness by 4 weeks of age and, with complete penetrance, balance defects of increasing severity. This study reveals the previously unknown role of S1P signaling in the maintenance of cochlear and vestibular integrity and suggests a means for therapeutic intervention in degenerative hearing loss.
Current Drug Targets | 2007
Deron R. Herr; Jerold Chun
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are two well-studied lysophospholipids that are known to be important regulators of cellular events. Their actions are mediated by activating a family of G-protein coupled receptors present in many cell types and tissues. These receptors have diverse biological roles owing to the heterogeneity of their signal transduction pathways. Many of these receptors are expressed in subsets of cells in the developing and mature mammalian nervous system and are thought to have important functions in its formation and maintenance. They are also widely expressed within other organ systems such as the immune system. Growing interest in the field has stimulated the development of a number of molecules that act as agonists or antagonists to LPA and S1P receptors. These molecules may lead to the development of new therapeutic compounds. Indeed, one such compound (FTY720) is currently in clinical trials for use in preventing transplant rejection and treating multiple sclerosis. The purpose of this manuscript is to: 1) review effects elicited by LPA and S1P on cells and tissues with a particular emphasis on the nervous system, 2) examine possible roles of these lipids in the development of disease, and 3) summarize the existing literature describing their agonists/antagonists.
Journal of Biological Chemistry | 2008
Tânia Cristina Leite de Sampaio e Spohr; Ji Woong Choi; Shannon E. Gardell; Deron R. Herr; Stevens K. Rehen; Flávia Carvalho Alcantara Gomes; Jerold Chun
Lysophosphatidic acid (LPA) is a simple phospholipid derived from cell membranes that has extracellular signaling properties mediated by at least five G protein-coupled receptors referred to as LPA1–LPA5. In the nervous system, receptor-mediated LPA signaling has been demonstrated to influence a range of cellular processes; however, an unaddressed aspect of LPA signaling is its potential to produce specific secondary effects, whereby LPA receptor-expressing cells exposed to, or “primed,” by LPA may then act on other cells via distinct, yet LPA-initiated, mechanisms. In the present study, we examined cerebral cortical astrocytes as possible indirect mediators of the effects of LPA on developing cortical neurons. Cultured astrocytes express at least four LPA receptor subtypes, known as LPA1–LPA4. Cerebral cortical astrocytes primed by LPA exposure were found to increase neuronal differentiation of cortical progenitor cells. Treatment of unprimed astrocyte-progenitor cocultures with conditioned medium derived from LPA-primed astrocytes yielded similar results, suggesting the involvement of an astrocyte-derived soluble factor induced by LPA. At least two LPA receptor subtypes are involved in LPA priming, since the priming effect was lost in astrocytes derived from LPA receptor double-null mice (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{LPA}_{1}^{(-{/}-)}{/}\mathrm{LPA}_{2}^{(-{/}-)}\) \end{document}). Moreover, the loss of LPA-dependent differentiation in receptor double-null astrocytes could be rescued by retrovirally transduced expression of a single deleted receptor. These data demonstrate that receptor-mediated LPA signaling in astrocytes can induce LPA-dependent, indirect effects on neuronal differentiation.
Journal of Biological Chemistry | 2004
Deron R. Herr; Henrik Fyrst; Michael B. Creason; Van H. Phan; Julie D. Saba; Greg L. Harris
Sphingosine kinase is a highly conserved enzyme that catalyzes the synthesis of sphingosine 1-phosphate and reduces cellular levels of sphingosine and ceramide. Although ceramide is pro-apoptotic and sphingosine is generally growth-inhibitory, sphingosine 1-phosphate signaling promotes cell proliferation, survival, and migration. Sphingosine kinase is thus in a strategic position to regulate important cell fate decisions which may contribute to normal animal development. To facilitate studies examining the potential role of sphingosine kinase and long chain base metabolism in Drosophila development, we characterized two putative Drosophila sphingosine kinase genes, Sk1 and Sk2. Both genes functionally and biochemically complement a yeast sphingosine kinase mutant, express predominantly cytosolic activities, and are capable of phosphorylating a range of endogenous and non-endogenous sphingoid base substrates. The two genes demonstrate overlapping but distinct temporal and spatial expression patterns in the Drosophila embryo, and timing of expression is consistent with observed changes in long chain base levels throughout development. A null Sk2 transposon insertion mutant demonstrated elevated long chain base levels, impaired flight performance, and diminished ovulation. This is the first reported mutation of a sphingosine kinase in an animal model; the associated phenotypes indicate that Sk1 and Sk2 are not redundant in biological function and that sphingosine kinase is essential for diverse physiological functions in this organism.