Federico Torta
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Federico Torta.
Science | 2015
Jeeyun Chung; Federico Torta; Kaori Masai; Louise Lucast; Heather Czapla; Lukas Bahati Tanner; Pradeep Narayanaswamy; Markus R. Wenk; Fubito Nakatsu; Pietro De Camilli
Membrane contact sites promote lipid exchange Most membrane lipids are manufactured in the endoplasmic reticulum (ER). Different organelles and the plasma membrane (PM) have distinct phospholipid compositions. Chung et al., working in mammalian cells, and Moser von Filseck et al., working in yeast, both describe how a family of proteins is important in maintaining the balance of lipids within the cell. These special proteins accumulate at and tether contact sites between the ER and the PM and promote the exchange of specific phospholipids, which helps to maintain the PMs distinct identity. Science, this issue pp. 428 and 432 The endoplasmic reticulum proteins ORP5 and ORP8 mediate PI4P-phosphatidylserine exchange at contact sites with the plasma membrane. Lipid transfer between cell membrane bilayers at contacts between the endoplasmic reticulum (ER) and other membranes help to maintain membrane lipid homeostasis. We found that two similar ER integral membrane proteins, oxysterol-binding protein (OSBP)–related protein 5 (ORP5) and ORP8, tethered the ER to the plasma membrane (PM) via the interaction of their pleckstrin homology domains with phosphatidylinositol 4-phosphate (PI4P) in this membrane. Their OSBP-related domains (ORDs) harbored either PI4P or phosphatidylserine (PS) and exchanged these lipids between bilayers. Gain- and loss-of-function experiments showed that ORP5 and ORP8 could mediate PI4P/PS countertransport between the ER and the PM, thus delivering PI4P to the ER-localized PI4P phosphatase Sac1 for degradation and PS from the ER to the PM. This exchange helps to control plasma membrane PI4P levels and selectively enrich PS in the PM.
Cell Host & Microbe | 2014
Pascal S. Roulin; Mark Lötzerich; Federico Torta; Lukas Bahati Tanner; Frank J. M. van Kuppeveld; Markus R. Wenk; Urs F. Greber
Similar to other positive-strand RNA viruses, rhinovirus, the causative agent of the common cold, replicates on a web of cytoplasmic membranes, orchestrated by host proteins and lipids. The host pathways that facilitate the formation and function of the replication membranes and complexes are poorly understood. We show that rhinovirus replication depends on host factors driving phosphatidylinositol 4-phosphate (PI4P)-cholesterol counter-currents at viral replication membranes. Depending on the virus type, replication required phosphatidylinositol 4-kinase class 3beta (PI4K3b), cholesteryl-esterase hormone-sensitive lipase (HSL) or oxysterol-binding protein (OSBP)-like 1, 2, 5, 9, or 11 associated with lipid droplets, endosomes, or Golgi. Replication invariably required OSBP1, which shuttles cholesterol and PI4P between ER and Golgi at membrane contact sites. Infection also required ER-associated PI4P phosphatase Sac1 and phosphatidylinositol (PI) transfer protein beta (PITPb) shunting PI between ER-Golgi. These data support a PI4P-cholesterol counter-flux model for rhinovirus replication.
Analytical Chemistry | 2008
Jonas Borch; Federico Torta; Stephen G. Sligar; Peter Roepstorff
Nanodiscs are self-assembled soluble discoidal phospholipids bilayers encirculated by an amphipathic protein that together provide a functional stabilized membrane disk for the incorporation of membrane-bound and membrane-associated molecules. The scope of the present work is to investigate how nanodiscs and their incorporated membrane receptors can be attached to surface plasmon resonance sensorchips and used to measure the kinetics of the interaction between soluble molecules and membrane receptors inserted in the bilayer of nanodiscs. Cholera toxin and its glycolipid receptor G(M1) constitute a system that can be considered a paradigm for interactions of soluble proteins with membrane receptors. In this work, we have investigated different technologies for capturing nanodiscs containing the glycolipid receptor G(M1) in lipid bilayers, enabling measurements of binding of its soluble interaction partner cholera toxin B subunit to the receptor with the sensorchip-based surface plasmon resonance (SPR) technology. The measured stoichiometric and kinetic values of the interaction are in agreement with those reported by previous studies, thus providing proof-of-principle that nanodiscs can be employed for kinetic SPR studies.
Journal of Proteome Research | 2009
Federico Torta; Matteo Fusi; C. S. Casari; C. E. Bottani; Angela Bachi
Protein phosphorylation controls many cellular processes and activities. One of the major challenges in the proteomic study of phosphorylation is the enrichment of substoichiometric phosphorylated peptides from complex mixtures. Titanium dioxide (TiO2)-based chromatography is now widely applied to isolate phosphopeptides because of its efficiency and flexibility. In this study, a novel TiO2 coated matrix assisted laser desorption ionization plate is presented and tested for the purification of phosphopeptides from complex mixtures. The novel feature of this approach is the deposition of a nanostructured TiO2 film on stainless steel plates by pulsed laser deposition (PLD). By using tryptic digests of alpha-casein, beta-casein, and other nonphosphorylated proteins, the successful enrichment of phosphopeptides was possible with this novel device, called T-plate, even when working in the low fmol range, making the sample ready for mass spectrometric analysis in few minutes.
Proteomics | 2008
Federico Torta; Vera Usuelli; Antonio Malgaroli; Angela Bachi
Nitric oxide (NO) produces covalent PTMs of specific cysteine residues, a process known as S‐nitrosylation. This route is dynamically regulated and is one of the major NO signalling pathways known to have strong and dynamic interactions with redox signalling. In agreement with this scenario, binding of NO to key cysteine groups can be linked to a broad range of physiological and pathological cellular events, such as smooth muscle relaxation, neurotransmission and neurodegeneration. The characterization of S‐nitrosylated residues and the functional relevance of this protein modification are both essential information needed to understand the action of NO in living organisms. In this review, we focus on recent advances in this field and on state‐of‐the‐art proteomic approaches which are aimed at characterizing the S‐nitrosylome in different biological backgrounds.
Science | 2016
Tomas Laursen; Jonas Borch; Camilla S. Knudsen; Krutika Bavishi; Federico Torta; Helle Juel Martens; Daniele Silvestro; Nikos S. Hatzakis; Markus R. Wenk; Timothy R. Dafforn; Carl Erik Olsen; Mohammed Saddik Motawia; Björn Hamberger; Birger Lindberg Møller; Jean-Etienne Bassard
Metabolite channeling by a dynamic metabolon The specialized metabolite dhurrin breaks down into cyanide when plant cell walls have been chewed, deterring insect pests. Laursen et al. found that the enzymes that synthesize dhurrin in sorghum assemble as a metabolon in lipid membranes (see the Perspective by Dsatmaichi and Facchini). The dynamic nature of metabolon assembly and disassembly provides dhurrin on an as-needed basis. Membrane-anchored cytochrome P450s cooperated with a soluble glucosyltransferase to channel intermediates toward efficient dhurrin production. Science, this issue p. 890; see also p. 829 Enzymes that synthesize a specialized metabolite congregate and disperse on an as-needed basis in the lipid membrane. Metabolic highways may be orchestrated by the assembly of sequential enzymes into protein complexes, or metabolons, to facilitate efficient channeling of intermediates and to prevent undesired metabolic cross-talk while maintaining metabolic flexibility. Here we report the isolation of the dynamic metabolon that catalyzes the formation of the cyanogenic glucoside dhurrin, a defense compound produced in sorghum plants. The metabolon was reconstituted in liposomes, which demonstrated the importance of membrane surface charge and the presence of the glucosyltransferase for metabolic channeling. We used in planta fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to study functional and structural characteristics of the metabolon. Understanding the regulation of biosynthetic metabolons offers opportunities to optimize synthetic biology approaches for efficient production of high-value products in heterologous hosts.
Science | 2017
Joshua A. Lees; Mirko Messa; Elizabeth Wen Sun; Heather Wheeler; Federico Torta; Markus R. Wenk; Pietro De Camilli; Karin M. Reinisch
Understanding insulin release Insulin release takes place in two phases: a first rapid burst followed by a series of small exocytic bursts that coincide with pulsatile spikes in cytosolic Ca2+ levels. The second phase is impaired in patients with type II diabetes, underscoring the importance of understanding its molecular basis. Lees et al. report a mechanism through which TMEM24, a lipid transport protein that concentrates at endoplasmic reticulum–plasma membrane contact sites, regulates the pulsatility of cytosolic Ca2+ and phosphoinositide signaling. This process in turn regulates pulsatile insulin secretion during the slow insulin release phase. Science, this issue p. eaah6171 Direct lipid transport between the endoplasmic reticulum and the plasma membrane helps to control insulin secretion. INTRODUCTION Insulin is secreted by pancreatic β cells in response to glucose stimulation. Its release is controlled by the interplay of calcium and phosphoinositide signaling pathways. A rapid release phase, in which insulin containing granules that are already docked and primed at the plasma membrane (PM) undergo exocytosis, is followed by slow release. In this second phase, granules are docked and primed and then released in a series of bursts, each triggered by a spike in cytosolic Ca2+. RATIONALE To better understand the molecular basis underlying insulin secretion, we characterized TMEM24, a protein enriched in neuroendocrine cells previously suggested to be required for a normal secretory response. RESULTS We found that TMEM24 is an endoplasmic reticulum (ER) protein that concentrates at ER-PM contact sites, where it tethers the two bilayers. TMEM24 binding “in trans” to the PM is negatively regulated by phosphorylation in response to elevation of cytosolic Ca2+, so that TMEM24 transiently dissociates from the PM as Ca2+ concentration spikes and then reassociates with this membrane upon dephosphorylation. Additionally, TMEM24 contains a lipid transport module of the synaptotagmin-like, mitochondrial and lipid-binding protein (SMP) family, which we structurally characterized and showed to bind glycerolipids with a preference for phosphatidylinositol (PI). Thus, TMEM24 helps deliver PI, which is synthesized in the ER, to the PM, where it is converted to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] to replenish pools of this lipid hydrolyzed during glucose-stimulated signaling. Supporting a key role of TMEM24 in the coordination of Ca2+ and phosphoinositide signaling, the lipid transport function of TMEM24 is essential for sustaining the intracellular Ca2+ oscillations that trigger bursts of insulin granule release and hence insulin secretion. PI(4,5)P2 is required for Ca2+-dependent exocytosis. It also controls the activity of PM ion channels that regulate cytosolic Ca2+ levels and is the precursor of IP3, which also helps to modulate cytosolic Ca2+ by triggering Ca2+ release from the ER. Thus, in insulin-secreting cells, TMEM24 participates in coordinating Ca2+ and phosphoinositide signaling pathways to cause pulsatile insulin secretion (see the figure). CONCLUSIONS Our findings implicate ER-PM contact sites and an ER resident lipid-transfer protein in the direct regulation of PM phosphoinositide pools, offering fresh insights into the mechanisms of cellular phosphoinositide dynamics. More specifically, they elaborate the mechanisms underlying insulin secretion, which is impaired in patients with type II diabetes and may ultimately have therapeutic ramifications. TMEM24 activity cycle at ER-PM contacts. Glucose stimulation of insulin-secreting cells triggers Ca2+ influx, phospholipase C–dependent PI(4,5)P2 cleavage, and granule exocytosis. Ca2+-stimulated phosphorylation causes TMEM24 dissociation from the PM and interruption of SMP-mediated PI transfer that allows PI(4,5)P2 resynthesis. Lowered PI(4,5)P2 levels attenuate the excitatory response. Dephosphorylation allows TMEM24 return to the PM to replenish PI(4,5)P2, permitting a new cycle of Ca2+ elevation and secretion. Insulin is released by β cells in pulses regulated by calcium and phosphoinositide signaling. Here, we describe how transmembrane protein 24 (TMEM24) helps coordinate these signaling events. We showed that TMEM24 is an endoplasmic reticulum (ER)–anchored membrane protein whose reversible localization to ER-plasma membrane (PM) contacts is governed by phosphorylation and dephosphorylation in response to oscillations in cytosolic calcium. A lipid-binding module in TMEM24 transports the phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] precursor phosphatidylinositol between bilayers, allowing replenishment of PI(4,5)P2 hydrolyzed during signaling. In the absence of TMEM24, calcium oscillations are abolished, leading to a defect in triggered insulin release. Our findings implicate direct lipid transport between the ER and the PM in the control of insulin secretion, a process impaired in patients with type II diabetes.
Analytical Chemistry | 2014
Pradeep Narayanaswamy; Sudhirkumar Shinde; Robert Sulc; Rachel Kraut; Gregory O. Staples; Chung Hwee Thiam; Rudolf Grimm; Börje Sellergren; Federico Torta; Markus R. Wenk
Current mass spectrometry-based lipidomics aims to comprehensively cover wide ranges of lipid classes. We introduce a strategy to capture phospho-monoester lipids and improve the detection of long-chain base phosphates (LCB-Ps, e.g., sphingosine-1-phosphate). Ten novel LCB-Ps (d18:2, t20:1, odd carbon forms) were discovered and characterized in tissues from human and mouse, as well in D. melanogaster and S. cerevisiae. These findings have immediate relevance for our understanding of sphingosine-1-phosphate biosynthesis, signaling, and degradation.
Journal of Lipid Research | 2017
John A. Bowden; Alan Heckert; Candice Z. Ulmer; Christina M. Jones; Jeremy P. Koelmel; Laila Abdullah; Linda Ahonen; Yazen Alnouti; Aaron M. Armando; John M. Asara; Takeshi Bamba; John R. Barr; Jonas Bergquist; Christoph H. Borchers; Joost Brandsma; Susanne B. Breitkopf; Tomas Cajka; Amaury Cazenave-Gassiot; Antonio Checa; Michelle A. Cinel; Romain A. Colas; Serge Cremers; Edward A. Dennis; James E. Evans; Alexander Fauland; Oliver Fiehn; Michael S. Gardner; Timothy J. Garrett; Katherine H. Gotlinger; Jun Han
As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950–Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra- and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium. While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.
eLife | 2016
Shuhua Thong; Bilge Ercan; Federico Torta; Zhen Yang Fong; Hui Yi Alvina Wong; Markus R. Wenk; Shu-Sin Chng
In Gram-negative bacteria, lipid asymmetry is critical for the function of the outer membrane (OM) as a selective permeability barrier, but how it is established and maintained is poorly understood. Here, we characterize a non-canonical ATP-binding cassette (ABC) transporter in Escherichia coli that provides energy for maintaining OM lipid asymmetry via the transport of aberrantly localized phospholipids (PLs) from the OM to the inner membrane (IM). We establish that the transporter comprises canonical components, MlaF and MlaE, and auxiliary proteins, MlaD and MlaB, of previously unknown functions. We further demonstrate that MlaD forms extremely stable hexamers within the complex, functions in substrate binding with strong affinity for PLs, and modulates ATP hydrolytic activity. In addition, MlaB plays critical roles in both the assembly and activity of the transporter. Our work provides mechanistic insights into how the MlaFEDB complex participates in ensuring active retrograde PL transport to maintain OM lipid asymmetry. DOI: http://dx.doi.org/10.7554/eLife.19042.001