Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derrick E. Rancourt is active.

Publication


Featured researches published by Derrick E. Rancourt.


Nature | 1998

DNA-dependent protein kinase acts upstream of p53 in response to DNA damage.

Richard A. Woo; Kevin G. McLure; Susan P. Lees-Miller; Derrick E. Rancourt; Patrick W.K. Lee

The tumour suppressor p53 becomes activated as a transcription factor in response to DNA damage, but the mechanism for this activation is unclear. A good candidate for an upstream activator of p53 is the DNA-dependent protein kinase (DNA-PK) that depends on the presence of DNA breaks for its activity. Here we investigate the link between DNA damage and the activation of DNA-PK and of p53. To determine whether DNA-PK is an upstream mediator of the p53 DNA-damage response, we analysed a severe combined-immunodeficiency (SCID) mouse cell line, SCGR11 (refs 7, 8), and the human glioma cell line M059J (ref. 9). Both cell lines lack any detectable DNA-PK activity. We find that p53 is incapable of binding to DNA in the absence of DNA-PK, that DNA-PK is necessary but not sufficient for activation of p53 sequence-specific DNA binding, and that this activation occurs in response to DNA damage. Our results establish DNA-PK as a link between DNA damage and p53 activation, and reveal the existence of a mammalian DNA-damage-response pathway.


BMC Developmental Biology | 2005

Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: Effect of cofactors on differentiating lineages

Nicole I. zur Nieden; Grazyna Kempka; Derrick E. Rancourt; Hans-Jürgen Ahr

BackgroundRecently, tissue engineering has merged with stem cell technology with interest to develop new sources of transplantable material for injury or disease treatment. Eminently interesting, are bone and joint injuries/disorders because of the low self-regenerating capacity of the matrix secreting cells, particularly chondrocytes. ES cells have the unlimited capacity to self-renew and maintain their pluripotency in culture. Upon induction of various signals they will then differentiate into distinctive cell types such as neurons, cardiomyocytes and osteoblasts.ResultsWe present here that BMP-2 can drive ES cells to the cartilage, osteoblast or adipogenic fate depending on supplementary co-factors. TGFβ1, insulin and ascorbic acid were identified as signals that together with BMP-2 induce a chondrocytic phenotype that is characterized by increased expression of cartilage marker genes in a timely co-ordinated fashion. Expression of collagen type IIB and aggrecan, indicative of a fully mature state, continuously ascend until reaching a peak at day 32 of culture to approximately 80-fold over control values. Sox9 and scleraxis, cartilage specific transcription factors, are highly expressed at very early stages and show decreased expression over the time course of EB differentiation. Some smaller proteoglycans, such as decorin and biglycan, are expressed at earlier stages. Overall, proteoglycan biosynthesis is up-regulated 7-fold in response to the supplements added. BMP-2 induced chondrocytes undergo hypertrophy and begin to alter their expression profile towards osteoblasts. Supplying mineralization factors such as β-glycerophosphate and vitamin D3 with the culture medium can facilitate this process. Moreover, gene expression studies show that adipocytes can also differentiate from BMP-2 treated ES cells.ConclusionsUltimately, we have found that ES cells can be successfully triggered to differentiate into chondrocyte-like cells, which can further alter their fate to become hypertrophic, and adipocytes. Compared with previous reports using a brief BMP-2 supplementation early in differentiation, prolonged exposure increased chondrogenic output, while supplementation with insulin and ascorbic acid prevented dedifferentiation. These results provide a foundation for the use of ES cells as a potential therapy in joint injury and disease.


The Journal of Comparative Neurology | 2003

Patterned Purkinje cell degeneration in mouse models of Niemann‐Pick type C disease

Justyna R. Sarna; Matt Larouche; Hassan Marzban; Roy V. Sillitoe; Derrick E. Rancourt; Richard Hawkes

Niemann Pick disease type C1 (NPC1) is an inherited, autosomal recessive, lipid‐storage disorder with major neurological involvement. Purkinje cell death is a prominent feature of the neuropathology of NPC. We have investigated Purkinje cell death in two murine models of NPC1, BALB/c npcnih and C57BLKS/J spm. In both cases, extensive Purkinje cell death was found in the cerebellum. The pattern of Purkinje cell death is complex. First, zebrin II‐negative Purkinje cells disappear, to leave survivors aligned in stripes that closely resemble the pattern revealed by using zebrin II immunocytochemistry. Subsequently, as the disease progresses, additional Purkinje cells die. At the terminal stages of the disease, the surviving Purkinje cells are concentrated in lobules IX and X of the posterior lobe vermis. Purkinje cell degeneration is accompanied by the ectopic expression of tyrosine hydroxylase and the small heat shock protein HSP25, both associated preferentially with the surviving cells. The pattern of cell death thus reflects the fundamental compartmentation of the cerebellum into zones and stripes. J. Comp. Neurol. 456:279–291, 2003.


Human Reproduction | 2008

ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells

Xiangyun Li; Roman Krawetz; Shiying Liu; Guoliang Meng; Derrick E. Rancourt

BACKGROUND Efficient slow freezing protocols within serum-free and feeder-free culture systems are crucial for the clinical application of human embryonic stem (hES) cells. Frequently, however, hES cells must be cryopreserved as clumps when using conventional slow freezing protocols, leading to lower survival rates during freeze-thaw and limiting their recovery and growth efficiency after thawing, as well as limiting downstream applications that require single cell suspensions. We describe a novel method to increase freeze-thaw survival and proliferation rate of single hES cells in serum-free and feeder-free culture conditions. METHODS hES cells maintained on Matrigel-coated dishes were dissociated into single cells with Accutase and slow freezing. After thawing at 37 degrees C, cells were cultured in mTeSR medium supplemented with 10 microM of Rho-associated kinase inhibitor Y-27632 for 1 day. RESULTS The use of Y-27632 and Accutase significantly increases the survival of single hES cells after thawing compared with a control group (P < 0.01). Furthermore, by treatment of hES cell aggregates with EGTA to disrupt cell-cell interaction, we show that Y-27632 treatment does not directly affect hES cell apoptosis. Even in the presence of Y-27632, hES cells deficient in cell-cell interaction undergo apoptosis. Y-27632-treated freeze-thawed hES cells retain typical morphology, stable karyotype, expression of pluripotency markers and the potential to differentiate into derivatives of all three germ layers after long-term culture. CONCLUSIONS The method described here allows for cryopreservation of single hES cells in serum-free and feeder-free conditions and therefore we believe this method will be ideal for current and future hES cell applications that are targeted towards a therapeutic end-point.


Stem Cells and Development | 2008

The ROCK Inhibitor Y-27632 Enhances the Survival Rate of Human Embryonic Stem Cells Following Cryopreservation

Xiangyun Li; Guoliang Meng; Roman Krawetz; Shiying Liu; Derrick E. Rancourt

After slow freezing, the survival rate of human embryonic stem (hES) cells is poor and inconsistent. The aim of this study was to increase the freeze-thaw survival rate of hES cells by utilizing the ROCK inhibitor Y-27632. hES cell colonies were first treated with Y-27632, followed by collagenase IV and TrypLE Select dissociation whereupon small clumps were slow frozen using 90% Knockout serum replacement and 10% dimethyl sulfoxide. After thawing at 37 C, the clumps were cultured in medium supplemented with 10 microM Y-27632 for 1 day. Our results show that the use of Y-27632 significantly increases the survival of hES cells after thawing compared with that of the control group. Y-27632-treated freeze-thawed hES cells retain morphology, stable karyotype, expression of cell surface markers, and the potential to differentiate into derivatives of all three germ layers after long-term culture. We have concluded that conventional slow freezing with Y-27632 treatment is efficient and convenient for the cryopreservation of hES cells.


Journal of Biological Chemistry | 2006

Importance of K+-dependent Na+/Ca2+-exchanger 2, NCKX2, in Motor Learning and Memory

Xiao Fang Li; Lech Kiedrowski; François Tremblay; Fernando R. Fernandez; Marco Perizzolo; Robert J. Winkfein; Ray W. Turner; Jaideep S. Bains; Derrick E. Rancourt; Jonathan Lytton

Plasma membrane Na+/Ca2+-exchangers play a predominant role in Ca2+ extrusion in brain. Neurons express several different Na+/Ca2+-exchangers belonging to both the K+-independent NCX family and the K+-dependent NCKX family. The unique contributions of each of these proteins to neuronal Ca2+ homeostasis and/or physiology remain largely unexplored. To address this question, we generated mice in which the gene encoding the abundant neuronal K+ -dependent Na+/Ca2+-exchanger protein, NCKX2, was knocked out. Analysis of these animals revealed a significant reduction in Ca2+ flux in cortical neurons, a profound loss of long term potentiation and an increase in long term depression at hippocampal Schaffer/CA1 synapses, and clear deficits in specific tests of motor learning and spatial working memory. Surprisingly, there was no obvious loss of photoreceptor function in cones, where expression of the NCKX2 protein had been reported previously. These data emphasize the critical and non-redundant role of NCKX2 in the local control of neuronal [Ca2+] that is essential for the development of synaptic plasticity associated with learning and memory.


BioEssays | 2009

Human embryonic stem cells: caught between a ROCK inhibitor and a hard place.

Roman Krawetz; Xiangyun Li; Derrick E. Rancourt

Since their derivation, human embryonic stem (hES) cells have been used for a variety of applications including developmental biology, pathology, chemical biology, genomics, and proteomics. However, their most important potential application is the generation of cells and tissues, which can be used for cell‐based therapies. One of the main drawbacks of hES cell culture is that they are particularly sensitive to dissociation, which is required for passaging, expansion, cryopreservation, and other applications. Recently, it has been discovered that an inhibitor of Rho kinase (ROCKi; Y‐27632) increases the survival rate of dissociated, single hES cells. This breakthrough has allowed new methods in hES cell culture to be developed, with the promise of increasing hES cell numbers into the realm of clinical relevance. In our studies demonstrating that ROCKi dramatically increases hES cell cryopreservation efficiency, we have observed that ROCKi treatment does not decrease hES cells susceptibility to apoptosis. Rather, we hypothesize that ROCKi treatment desensitizes single hES cells to their environment reducing the odds that individual cells will undergo anoikis.


Molecular and Cellular Biology | 2003

Selective Knockout of Mouse ERG1 B Potassium Channel Eliminates IKr in Adult Ventricular Myocytes and Elicits Episodes of Abrupt Sinus Bradycardia

James P. Lees-Miller; Jiqing Guo; Julie R. Somers; Dan Roach; Robert S. Sheldon; Derrick E. Rancourt; Henry J. Duff

ABSTRACT The ERG1 gene encodes a family of potassium channels. Mutations in human ERG1 lead to defects in cardiac repolarization, referred to as the long QT syndrome. Through homologous recombination in mouse embryonic stem cells the ERG1 B potassium channel transcript was eliminated while the ERG1 A transcript was maintained. Heterologous expression of ERG1 isoforms had previously indicated that the deactivation time course of ERG1 B is 10-fold more rapid than that of ERG1 A. In day-18 fetal +/+ myocytes, IKr exhibited two time constants of deactivation (3,933 ± 404 and 350 ± 19 ms at −50 mV), whereas in age-matched ERG1 B−/− mice the rapid component was absent. Biexponential deactivation rates (2,039 ± 268 and 163 ± 43 ms at −50 mV) were also observed in adult +/+ myocytes. In adult ERG1 B−/− myocytes no IKr was detected. Electrocardiogram intervals were similar in +/+ and −/− mice. However, adult −/− mice manifested abrupt spontaneous episodes of sinus bradycardia (>100 ms of slowing) in 6 out of 21 mice. This phenomenon was never observed in +/+ mice (0 out of 16). We conclude that ERG1 B is necessary for IKr expression in the surface membrane of adult myocytes. Knockout of ERG1 B predisposes mice to episodic sinus bradycardia.


Stem Cells and Development | 2010

Extracellular Matrix Isolated From Foreskin Fibroblasts Supports Long-Term Xeno-Free Human Embryonic Stem Cell Culture

Guoliang Meng; Shiying Liu; Xiangyun Li; Roman Krawetz; Derrick E. Rancourt

Human embryonic stem (hES) cells hold great promise for application of human cell and tissue replacement therapy. However, the overwhelming majority of currently available hES cell lines have been directly or indirectly exposed to materials containing animal-derived components during their derivation, propagation, and cryopreservation. Unlike feeder-based cultures, which require the simultaneous growth of feeder and stem cells, resulting in mixed cell populations, stem cells grown on feeder-free systems are easily separated from the surface, presenting a pure population of cells for downstream applications. In this study, we have developed a novel method to expand hES cells in xeno-free, feeder-free conditions using 2 different matrices derived from xeno-free human foreskin fibroblasts (XF-HFFs). Using XF-HFF-derived extracellular matrix, together with 100 ng/mL recombinant bFGF-supplemented HEScGRO Basal Medium, long-term xeno-free expansion of hES cells is possible. Resulting hES cells were subjected to stringent tests and were found to maintain ES cell features, including morphology, pluripotency, stable karyotype, and expression of cell surface markers, for at least 20 passages. Xeno-free culturing practices are essential for the translation of basic hES cell research into the clinic. Therefore, the method presented in this study demonstrates that hES cells can be cultured in complete xeno-free conditions without the loss of pluripotency and furthermore, without the possibility of contamination from exogenous sources.


Neuroscience Research | 2008

Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Aβ(1-40) injured rats

Jun Tang; Haiwei Xu; Xiaotang Fan; Dabing Li; Derrick E. Rancourt; Guangji Zhou; Zhifang Li; Li Yang

The versatility of neural precursor cells (NPCs) derived from mouse embryonic stem cells (ESCs) has recently rekindled interests in cell replacement strategies aimed at neurodegenerative diseases. We observed the survival, migration, differentiation and functional recovery of NPCs transplanted into the hippocampus of aggregated beta-amyloid (Abeta) peptide injured rats. Congo Red plaques, Fluro-jade B positive degenerating neurons and neuronal loss were observed in the Abeta-injured hippocampus of rats, accompanied with significant increases in escape latency and decrease in the ratio of exploratory time in a Morris water maze test. EGFP-expressing mouse ES cells were induced into Nestin-positive NPCs before transplantation into the Abeta-injured hippocampus. A marked decrease in escape latency and exploratory time were observed at least 16 weeks after transplantation compared to Abeta-injured animals without grafts. Grafted EGFP-expressing NPCs spread away from the injection tract and about 12.01+/-0.67% and 9.41+/-0.78% of NPCs differentiated into, respectively, GFAP- and NF200-positive cells 4 W after transplantation. These ratios gradually increased to 40.25+/-0.57% and 19.35+/-0.84% by 16 W. The restoration of hippocampal function by ESCs suggests that cell transplantation may be the effective choice to improve the cognitive function caused by Abeta injured.

Collaboration


Dive into the Derrick E. Rancourt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge