Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael S. Kallos is active.

Publication


Featured researches published by Michael S. Kallos.


Biotechnology and Bioengineering | 1999

Inoculation and growth conditions for high-cell-density expansion of mammalian neural stem cells in suspension bioreactors

Michael S. Kallos; Leo A. Behie

Inoculation and growth conditions for the large-scale expansion of mammalian neural stem cells (NSC) have been determined. We examined suspension culture bioreactors of murine NSC, and concluded that the oxygen level should be kept high (20%), and the osmolarity of the medium should be kept low (below 400 mOsm/kg). The pH of the medium was found to have a large effect on cell proliferation, and the best growth characteristics were obtained within an optimum pH range of 7. 1 to 7.5. The inoculation conditions were also seen to have a large effect not only on the growth characteristics, but also on the number of cells that die in the initial stages of the culture. For large expansion of cells, low inoculum levels (10(4) cells/mL) and single-cell suspensions proved superior, whereas, for fast expansion of cells, higher inoculum levels (10(5) cells/mL) and spheroid inoculum forms were preferred. The inoculum temperature of the medium did not have a large effect on growth characteristics, but the pH greatly influenced cell proliferation. Inoculum pH levels should also be kept between 7.1 and 7.5. If these protocols are followed, high multiplication ratios and viabilities can be obtained in a 5-day batch suspension culture bioreactor run. A large number of cells could then be used in animal models for testing of neural drugs and in research and development toward cures for neurodegenerative disorders such as multiple sclerosis (MS) and Huntingtons and Parkinsons disease. The results presented here also point the way toward studies on in vitro expansion of human neural stem cells.


Developmental Brain Research | 2002

Expansion of mammalian neural stem cells in bioreactors: effect of power input and medium viscosity

Arindom Sen; Michael S. Kallos; Leo A. Behie

Multipotent neural precursors can be cultured in suspension bioreactors as aggregates of stem cells and progenitor cells. However, it is important to limit the size of the aggregates, as necrotic centers may develop at very large diameters. Previously, we have shown that the hydrodynamics within a suspension bioreactor can be used to control the diameter of NSC aggregates (D(MAVG)<150 microm) below sizes where necrosis would be expected to occur. In the present study, power law correlations were developed for our bioreactors showing the dependence of the maximum mean aggregate diameter on both the kinematic viscosity of the medium and the power input per unit mass of medium. The power input was manipulated by changing the agitation rate (60-100 rpm), and the viscosity was manipulated through the addition of non-toxic levels of carboxymethylcellulose. The study also confirmed that the maximum liquid shear generated at the surface of the aggregates was sufficient to dislodge single cells, thus limiting the maximum diameter of the aggregates, without causing cell damage (tau(max)=9.76 dyn/cm(2)). This is a first step in the development of a reproducible, scaled-up process for the production of neural stem cells for therapeutic applications including the treatment of neurodegenerative disorders and acute central nervous system injuries.


Cells Tissues Organs | 2012

Mass transfer limitations in embryoid bodies during human embryonic stem cell differentiation.

Allison Van Winkle; Ian D. Gates; Michael S. Kallos

Due to their ability to differentiate into cell types from all the three germ layers and their potential unlimited capacity for expansion, embryonic stem cells have tremendous potential to treat diseases and injuries. Spontaneous differentiation of human embryonic stem cells (hESCs) is influenced by the size of the differentiating embryoid bodies (EBs). To further understand the dynamics between nutrient mass transfer, EB size, and stem cell differentiation, a transient mass diffusion model of a single hESC EB was constructed. The results revealed that the oxygen concentration at the centers of large EBs (400-µm radius) was 50% lower when compared to that in smaller EBs (200-µm radius). In addition, the concentration profile of cytokines within an EB depended strongly on their depletion rate, with higher depletion rates resulting in cytokine concentrations that varied significantly throughout the EB. A comparison of the results of our model with published experimental data reveals a close correlation between the fraction of cells that differentiate to a given lineage and the fraction of cells exposed to different oxygen or cytokine concentrations. This, along with other data from the literature, suggests that diffusive mass transfer influences the differentiation of hESCs within EBs by controlling the spatial distribution of soluble factors. This has important implications for research involving the differentiation of embryonic stem cells in EBs, as well as for bioprocess design and the development of robust differentiation protocols where mass transfer could be altered to control the cell differentiation trajectory.


Medical & Biological Engineering & Computing | 2003

Large-scale expansion of mammalian neural stem cells: a review.

Michael S. Kallos; Arindom Sen; Leo A. Behie

A relatively new approach to the treatment of neurodegenerative diseases is the direct use of neural stem cells (NSCs) as therapeutic agents. The expected demand for treatment from the millions of afflicted individuals, coupled with the expected demand from biotechnology companies creating therapies, has fuelled the need to develop large-scale culture methods for these cells. The rapid pace of discovery in this area has been assisted through the use of animal model systems, enabling many experiments to be performed quickly and effectively. This review focuses on recent developments in expanding human and murine NSCs on a large scale, including the development of new serum-free media and bioreactor protocols. In particular, engineering studies that characterise important scale-up parameters are examined, including studies examining the effects of long-term culture of NSCs in suspension bioreactors. In addition, recent advances in the human NSC system are reviewed, including techniques for the evaluation of NSC characteristics.


Stem Cells and Development | 2010

Reduced differentiation efficiency of murine embryonic stem cells in stirred suspension bioreactors.

Jaymi T. Taiani; Roman Krawetz; Nicole I. zur Nieden; Yiru Elizabeth Wu; Michael S. Kallos; John R. Matyas; Derrick E. Rancourt

The use of embryonic stem cells (ESCs) for regenerative medicine has generated increased attention due to the favorable attributes of these cells; namely, they are pluripotent and possess long-term self-renewal capacity. The initial aims of the present study were: (i) to use stirred suspension bioreactors to expand and differentiate ESCs into osteogenic and chondrogenic cell types and (ii) to explore if these ESC-derived cells influenced skeletal healing in an in vivo fracture model. We show that differentiation protocols used in static culture are insufficient when applied directly to suspension culture bioreactors. Moreover, when bioreactor-differentiated cells are transplanted into a burr-hole defect in bone, severe disruption of the bone architecture was noted at the fracture site, as determined by microcomputed tomography (microCT) imaging and histopathology. Further characterization of the bioreactor-differentiated cultures revealed that a subpopulation of cells in the resulting aggregates expressed the pluripotency marker Oct-4 in the nucleus. Nuclear Oct-4 expression persisted even after 30 days of culture in the absence of leukemia inhibitory factor (LIF). Remarkably, and unlike ESCs differentiated into skeletal cell types in static cultures, bioreactor-differentiated aggregates implanted subcutaneously into SCID mice formed teratomas. The development of effective ESC differentiation protocols for suspension bioreactors will require a more complete understanding of the environmental conditions within these culture systems and the influence that these conditions have on the regulation of pluripotency and differentiation in ESCs.


Journal of Tissue Engineering and Regenerative Medicine | 2014

Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture.

Yifan Yuan; Michael S. Kallos; Christopher J. Hunter; Arindom Sen

Human bone marrow‐derived mesenchymal stem cells (hBM‐MSCs) have potential clinical utility in the treatment of a multitude of ailments and diseases, due to their relative ease of isolation from patients and their capacity to form many cell types. However, hBM‐MSCs are sparse, and can only be isolated in very small quantities, thereby hindering the development of clinical therapies. The use of microcarrier‐based stirred suspension bioreactors to expand stem cell populations offers an approach to overcome this problem. Starting with standard culture protocols commonly reported in the literature, we have successfully developed new protocols that allow for improved expansion of hBM‐MSCs in stirred suspension bioreactors using CultiSpher‐S microcarriers. Cell attachment was facilitated by using intermittent bioreactor agitation, removing fetal bovine serum, modifying the stirring speed and manipulating the medium pH. By manipulating these parameters, we enhanced the cell attachment efficiency in the first 8 h post‐inoculation from 18% (standard protocol) to 72% (improved protocol). Following microcarrier attachment, agitation rate was found to impact cell growth kinetics, whereas feeding had no significant effect. By serially subculturing hBM‐MSCs using the new suspension bioreactor protocols, we managed to obtain cell fold increases of 103 within 30 days, which was superior to the 200‐fold increase obtained using the standard protocol. The cells were found to retain their defining characteristics after several passages in suspension. This new bioprocess represents a more efficient approach for generating large numbers of hBM‐MSCs in culture, which in turn should facilitate the development of new stem cell‐based therapies. Copyright


Journal of Tissue Engineering and Regenerative Medicine | 2012

Expansion and long-term maintenance of induced pluripotent stem cells in stirred suspension bioreactors.

Mehdi Shafa; Kirsten Sjonnesen; Akihiro Yamashita; Shiying Liu; Marek Michalak; Michael S. Kallos; Derrick E. Rancourt

Induced pluripotent stem cells (iPSCs) can provide an important source of cells for the next‐generation of cell therapies in regenerative medicine, in part due to their similarity to embryonic stem cells (ESCs). Patient‐specific iPSCs represent an opportunity for autologous cell therapies that are not restricted by immunological, ethical and technical obstacles. One of the technical hurdles that must be overcome before iPSCs can be clinically implemented is the scalable, reproducible production of iPSCs and their differentiated progeny. All of the iPSC lines established thus far have been generated and expanded with static tissue culture protocols, which are time‐consuming and suffer from batch‐to‐batch variability. Alternatively, stirred suspension bioreactors propose several benefits and their homogeneous culture environment facilitates the large‐scale expansion required for clinical studies at less cost. We have previously developed protocols for expanding murine and human ESCs as undifferentiated aggregates in stirred suspension bioreactors. The resulting cells were karyotypically normal, expressed pluripotency markers and could be differentiated into all three germ lineages, both in vitro and in vivo. In this study, we demonstrate that stirred suspension bioreactors yield 58‐fold expansion of undifferentiated pluripotent iPSCs over 4 days. In vitro differentiation into cartilage, bone and cardiomyocytes lineages, in addition to in vivo teratoma formation, further confirmed the existence of fully functional and undifferentiated pluripotent iPSC aggregates following long‐term passaging. Stirred suspension bioreactor culture represents an efficient process for the large‐scale expansion and maintenance of iPSCs, which is an important first step in their clinical application. Copyright


Biotechnology Progress | 2002

Passaging Protocols for Mammalian Neural Stem Cells in Suspension Bioreactors

Arindom Sen; Michael S. Kallos; Leo A. Behie

Mammalian neural stem cells (NSC) offer great promise as therapeutic agents for the treatment of central nervous system disorders. As a consequence of the large numbers of cells that will be needed for drug testing and transplantation studies, it is necessary to develop protocols for the large‐scale expansion of mammalian NSC. Neural stem cells and early progenitor cells can be expanded in vitro as aggregates in controlled bioreactors using carefully designed media. The first objective of this study was to determine if it is possible to maintain a population of murine neural stem and progenitor cells as aggregates in suspension culture bioreactors over extended periods of time. We discovered that serial passaging of a mixture of aggregates sizes resulted in high viabilities, high viable cell densities, and good control of aggregate diameter. When the NSC aggregates were serially subcultured three times without mechanical dissociation, a total multiplication ratio of 2.9 × 103 was achieved over a period of 12 days, whereas the aggregate size was controlled (mean diameter less than 150 μm) below levels at which necrosis would occur. Moreover, cell densities of 1.0 × 106 cells/mL were repeatedly achieved in batch culture with viabilities exceeding 80%. The second objective was to examine the proliferative potential of single cells shed from the surface of these aggregates. We found that the single cells, when subcultured, retained the capacity to generate new aggregates, gave rise to cultures with high viable cell densities and were able to differentiate into all of the primary cell phenotypes in the central nervous system.


Tissue Engineering | 2004

New Tissue Dissociation Protocol for Scaled-up Production of Neural Stem Cells in Suspension Bioreactors

Arindom Sen; Michael S. Kallos; Leo A. Behie

The successful dissociation of mammalian neural stem cell (NSC) aggregates (neurospheres) into a single-cell suspension is an important procedure when expanding NSCs for clinical use, or when performing important assays such as clonal analyses. Until now, researchers have had to rely primarily on destructive mechanical methods such as trituration with a pipette tip to break apart the aggregates. In this study we report on a new chemical dissociation procedure that is efficient, cost effective, reproducible, and much less harmful to murine NSCs than both mechanical and enzymatic techniques. This method, involving the manipulation of environmental pH levels, resulted in 40% higher measured cell densities and 15-20% higher viabilities compared with mechanical dissociation. Moreover, chemical dissociation resulted in the production of significantly less cellular debris. Chemical dissociation was found to have no adverse effects on the long-term proliferation of the NSCs, which retained the ability to proliferate, form neurospheres, self-renew, and exhibit multipotentiality. This chemical method represents a new approach for the dissociation of tissues.


Biotechnology Progress | 2008

Large-Scale Expansion of Mammary Epithelial Stem Cell Aggregates in Suspension Bioreactors†

Benjamin S. Youn; Arindom Sen; Michael S. Kallos; Leo A. Behie; Adele Girgis-Gabardo; Natasza A. Kurpios; Maria Barcelon; John A. Hassell

Mutations in the pathways regulating mammary epithelial stem cell (MESC) self‐renewal and differentiation are currently hypothesized to result in uncontrolled cell division and, in turn, breast tumor formation. Although research is aggressively being pursued to understand how such pathways result in breast cancer formation, current studies have been greatly limited by MESC scarcity. To address this issue, this study has successfully developed large‐scale expansion protocols for MESC through the subculture of murine mammary epithelial tissue aggregates, called mammospheres, in suspension bioreactors. Growth kinetics of mammospheres cultured in 125 mL suspension bioreactors and T‐flasks were found to be comparable, achieving cell densities of 3.10 × 105 and 2.75 × 105 cells/mL, respectively. This corresponded to a 4‐fold expansion over 8 days. Yields were also found to be strongly affected by liquid shear forces, where high agitation rates reduced overall cell numbers. Bioreactor cultures were scaled up to 1000 mL operating volumes, resulting in the production of 4.21 × 108 total cells (5.6‐fold expansion) from a single passage. Furthermore, intermittent replacement of culture medium with fresh medium dramatically improved maximum cell densities, resulting in an 11‐fold expansion, thereby enabling the generation of stem cells in quantities sufficient for standard biochemical and genetic analyses. After being cultured in suspension bioreactors for several passages, analysis by flow cytometry of Ki‐67 revealed that 85% of the population was composed of proliferating cells. The successful development of expansion protocols for MESC aggregates in suspension bioreactors makes available experimental avenues that were not previously accessible for breast cancer research, thereby facilitating future investigations into elucidating the role of MESCs in breast cancer tumorigenesis.

Collaboration


Dive into the Michael S. Kallos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge