Derrick K. Mathias
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Derrick K. Mathias.
Antimicrobial Agents and Chemotherapy | 2014
Andrea Ruecker; Derrick K. Mathias; Ursula Straschil; Thomas S. Churcher; Rhoel R. Dinglasan; Didier Leroy; Robert E. Sinden; Michael J. Delves
ABSTRACT Malaria elimination will require interventions that prevent parasite transmission from the human host to the mosquito. Experimentally, this is usually determined by the expensive and laborious Plasmodium falciparum standard membrane feeding assay (PfSMFA), which has limited utility for high-throughput drug screening. In response, we developed the P. falciparum dual gamete formation assay (PfDGFA), which faithfully simulates the initial stages of the PfSMFA in vitro. It utilizes a dual readout that individually and simultaneously reports on the functional viability of male and female mature stage V gametocytes. To validate, we screen the Medicines for Malaria Venture (MMV) Malaria Box library with the PfDGFA. Unique to this assay, we find compounds that target male gametocytes only and also compounds with reversible and irreversible activity. Most importantly, we show that compound activity in the PfDGFA accurately predicts activity in PfSMFAs, which validates and supports its adoption into the transmission-stage screening pipeline.
Infection and Immunity | 2014
Jennifer S. Armistead; Isabelle Morlais; Derrick K. Mathias; Juliette G. Jardim; Jaimy Joy; Arthur Fridman; Adam C. Finnefrock; Ansu Bagchi; Magdalena Plebanski; Diana G. Scorpio; Thomas S. Churcher; Natalie A. Borg; Jetsumon Sattabongkot; Rhoel R. Dinglasan
ABSTRACT Malaria transmission-blocking vaccines (TBVs) represent a promising approach for the elimination and eradication of this disease. AnAPN1 is a lead TBV candidate that targets a surface antigen on the midgut of the obligate vector of the Plasmodium parasite, the Anopheles mosquito. In this study, we demonstrated that antibodies targeting AnAPN1 block transmission of Plasmodium falciparum and Plasmodium vivax across distantly related anopheline species in countries to which malaria is endemic. Using a biochemical and immunological approach, we determined that the mechanism of action for this phenomenon stems from antibody recognition of a single protective epitope on AnAPN1, which we found to be immunogenic in murine and nonhuman primate models and highly conserved among anophelines. These data indicate that AnAPN1 meets the established target product profile for TBVs and suggest a potential key role for an AnAPN1-based panmalaria TBV in the effort to eradicate malaria.
Molecular & Cellular Proteomics | 2014
Dingyin Tao; Ceereena Ubaida-Mohien; Derrick K. Mathias; Jonas G. King; Rebecca Pastrana-Mena; Abhai K. Tripathi; Ilana Goldowitz; David R. Graham; Eli L. Moss; Matthias Marti; Rhoel R. Dinglasan
One of the critical gaps in malaria transmission biology and surveillance is our lack of knowledge about Plasmodium falciparum gametocyte biology, especially sexual dimorphic development and how sex ratios that may influence transmission from the human to the mosquito. Dissecting this process has been hampered by the lack of sex-specific protein markers for the circulating, mature stage V gametocytes. The current evidence suggests a high degree of conservation in gametocyte gene complement across Plasmodium, and therefore presumably for sex-specific genes as well. To better our understanding of gametocyte development and subsequent infectiousness to mosquitoes, we undertook a Systematic Subtractive Bioinformatic analysis (filtering) approach to identify sex-specific P. falciparum NF54 protein markers based on a comparison with the Dd2 strain, which is defective in producing males, and with syntenic male and female proteins from the reanalyzed and updated P. berghei (related rodent malaria parasite) gametocyte proteomes. This produced a short list of 174 male- and 258 female-enriched P. falciparum stage V proteins, some of which appear to be under strong diversifying selection, suggesting ongoing adaptation to mosquito vector species. We generated antibodies against three putative female-specific gametocyte stage V proteins in P. falciparum and confirmed either conserved sex-specificity or the lack of cross-species sex-partitioning. Finally, our study provides not only an additional resource for mass spectrometry-derived evidence for gametocyte proteins but also lays down the foundation for rational screening and development of novel sex-partitioned protein biomarkers and transmission-blocking vaccine candidates.
Infection and Immunity | 2012
Derrick K. Mathias; Jordan L. Plieskatt; Jennifer S. Armistead; Jeffrey M. Bethony; K. B. Abdul-Majid; A. McMillan; Evelina Angov; Martin J. Aryee; Bin Zhan; Portia Gillespie; Brian Keegan; Amar R. Jariwala; Wanderson Rezende; Maria Elena Bottazzi; Diana G. Scorpio; Peter J. Hotez; Rhoel R. Dinglasan
ABSTRACT Vaccines have been at the forefront of global research efforts to combat malaria, yet despite several vaccine candidates, this goal has yet to be realized. A potentially effective approach to disrupting the spread of malaria is the use of transmission-blocking vaccines (TBV), which prevent the development of malarial parasites within their mosquito vector, thereby abrogating the cascade of secondary infections in humans. Since malaria is transmitted to human hosts by the bite of an obligate insect vector, mosquito species in the genus Anopheles, targeting mosquito midgut antigens that serve as ligands for Plasmodium parasites represents a promising approach to breaking the transmission cycle. The midgut-specific anopheline alanyl aminopeptidase N (AnAPN1) is highly conserved across Anopheles vectors and is a putative ligand for Plasmodium ookinete invasion. We have developed a scalable, high-yield Escherichia coli expression and purification platform for the recombinant AnAPN1 TBV antigen and report on its marked vaccine potency and immunogenicity, its capacity for eliciting transmission-blocking antibodies, and its apparent lack of immunization-associated histopathologies in a small-animal model.
Nature Structural & Molecular Biology | 2015
Sarah C. Atkinson; Jennifer S. Armistead; Derrick K. Mathias; Maurice Marcel Sandeu; Dingyin Tao; Nahid Borhani-Dizaji; Brian B. Tarimo; Isabelle Morlais; Rhoel R. Dinglasan; Natalie A. Borg
Mosquito-based malaria transmission–blocking vaccines (mTBVs) target midgut-surface antigens of the Plasmodium parasites obligate vector, the Anopheles mosquito. The alanyl aminopeptidase N (AnAPN1) is the leading mTBV immunogen; however, AnAPN1s role in Plasmodium infection of the mosquito and how anti-AnAPN1 antibodies functionally block parasite transmission have remained elusive. Here we present the 2.65-Å crystal structure of AnAPN1 and the immunoreactivity and transmission-blocking profiles of three monoclonal antibodies (mAbs) to AnAPN1, including mAb 4H5B7, which effectively blocks transmission of natural strains of Plasmodium falciparum. Using the AnAPN1 structure, we map the conformation-dependent 4H5B7 neoepitope to a previously uncharacterized region on domain 1 and further demonstrate that nonhuman-primate neoepitope-specific IgG also blocks parasite transmission. We discuss the prospect of a new biological function of AnAPN1 as a receptor for Plasmodium in the mosquito midgut and the implications for redesigning the AnAPN1 mTBV.Mosquito-based malaria transmission-blocking vaccines (mTBVs) target midgut-surface antigens of the Plasmodium parasites obligate vector, the Anopheles mosquito. The alanyl aminopeptidase N (AnAPN1) is the leading mTBV immunogen; however AnAPN1s role in Plasmodium infection of the mosquito and how anti-AnAPN1 antibodies functionally block parasite transmission remains elusive. Here we present the 2.65 Å crystal structure of AnAPN1 and the immunoreactivity and transmission-blocking profile of three AnAPN1 monoclonal antibodies (mAb), including mAb 4H5B7, which effectively block transmission of natural strains of Plasmodium falciparum. Utilizing the AnAPN1 structure we map the conformation-dependent 4H5B7 neo-epitope to a previously uncharacterized region on domain 1, and further demonstrate that non-human primate neo-epitope-specific IgG also block parasite transmission. We discuss the prospect of a novel biological function of AnAPN1 as a receptor for Plasmodium in the mosquito midgut and the implications for redesigning the AnAPN1 mTBV.
Molecular & Cellular Proteomics | 2013
Ceereena Ubaida Mohien; David R. Colquhoun; Derrick K. Mathias; John G. Gibbons; Jennifer S. Armistead; Maria C. Rodriguez; Mario H. Rodriguez; Nathan Edwards; Jürgen Hartler; Gerhard G. Thallinger; David R. Graham; Jesús Martínez-Barnetche; Antonis Rokas; Rhoel R. Dinglasan
Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquitos luminal midgut brush border. Although the genome of the “model” African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax–An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus.
PLOS Pathogens | 2013
Derrick K. Mathias; Rebecca Pastrana-Mena; Elisabetta Ranucci; Dingyin Tao; Paolo Ferruti; Corrie Ortega; Gregory O. Staples; Joseph Zaia; Eizo Takashima; Takafumi Tsuboi; Natalie A. Borg; Luisella Verotta; Rhoel R. Dinglasan
Malaria transmission-blocking (T-B) interventions are essential for malaria elimination. Small molecules that inhibit the Plasmodium ookinete-to-oocyst transition in the midgut of Anopheles mosquitoes, thereby blocking sporogony, represent one approach to achieving this goal. Chondroitin sulfate glycosaminoglycans (CS-GAGs) on the Anopheles gambiae midgut surface are putative ligands for Plasmodium falciparum ookinetes. We hypothesized that our synthetic polysulfonated polymer, VS1, acting as a decoy molecular mimetic of midgut CS-GAGs confers malaria T-B activity. In our study, VS1 repeatedly reduced midgut oocyst development by as much as 99% (P<0.0001) in mosquitoes fed with P. falciparum and Plasmodium berghei. Through direct-binding assays, we observed that VS1 bound to two critical ookinete micronemal proteins, each containing at least one von Willebrand factor A (vWA) domain: (i) circumsporozoite protein and thrombospondin-related anonymous protein-related protein (CTRP) and (ii) vWA domain-related protein (WARP). By immunofluorescence microscopy, we observed that VS1 stains permeabilized P. falciparum and P. berghei ookinetes but does not stain P. berghei CTRP knockouts or transgenic parasites lacking the vWA domains of CTRP while retaining the thrombospondin repeat region. We produced structural homology models of the first vWA domain of CTRP and identified, as expected, putative GAG-binding sites on CTRP that align closely with those predicted for the human vWA A1 domain and the Toxoplasma gondii MIC2 adhesin. Importantly, the models also identified patches of electropositive residues that may extend CTRPs GAG-binding motif and thus potentiate VS1 binding. Our molecule binds to a critical, conserved ookinete protein, CTRP, and exhibits potent malaria T-B activity. This study lays the framework for a high-throughput screen of existing libraries of safe compounds to identify those with potent T-B activity. We envision that such compounds when used as partner drugs with current antimalarial regimens and with RTS,S vaccine delivery could prevent the transmission of drug-resistant and vaccine-breakthrough strains.
Infection, Genetics and Evolution | 2014
Derrick K. Mathias; Juliette G. Jardim; Lindsay A. Parish; Jennifer S. Armistead; Hung V. Trinh; Chalermpon Kumpitak; Jetsumon Sattabongkot; Rhoel R. Dinglasan
Novel strategies to directly thwart malaria transmission are needed to maintain the gains achieved by current control measures. Transmission-blocking interventions (TBIs), namely vaccines and drugs targeting parasite or mosquito molecules required for vector-stage parasite development, have been recognized as promising approaches for preventing malaria transmission. However, the number of TBI targets is limited and their degree of conservation among the major vector-parasite systems causing human disease is unclear. Therefore, discovery and characterization of novel proteins involved in vector-stage parasite development of Plasmodium falciparum and Plasmodium vivax is paramount. We mined the recent Anopheles gambiae midgut lipid raft proteome for putative mosquito-derived TBI targets and characterized a secreted glycoconjugate of unknown function, AgSGU. We analyzed molecular variation in this protein among a range of anopheline mosquitoes, determined its transcriptomic and proteomic profiles, and conducted both standard and direct membrane feeding assays with P. falciparum (lab/field) and P. vivax (field) in An. gambiae and Anopheles dirus. We observed that α-AgSGU antibodies significantly reduced midgut infection intensity for both lab and field isolates of P. falciparum in An. gambiae and An. dirus. However, no transmission-reducing effects were noted when comparable concentrations of antibodies were included in P. vivax-infected blood meals. Although antibodies against AgSGU exhibit transmission-reducing activity, the high antibody titer required for achieving 80% reduction in oocyst intensity precludes its consideration as a malaria mosquito-based TBI candidate. However, our results suggest that P. falciparum and P. vivax ookinetes use a different repertoire of midgut surface glycoproteins for invasion and that α-AgSGU antibodies, as well as antibodies to other mosquito-midgut microvillar surface proteins, may prove useful as tools for interrogating Plasmodium-mosquito interactions.
Antimicrobial Agents and Chemotherapy | 2016
Jared N. Balaich; Derrick K. Mathias; Baldwyn Torto; Bryan T. Jackson; Dingyin Tao; Babak Ebrahimi; Brian B. Tarimo; Xavier Cheseto; Woodbridge A. Foster; Rhoel R. Dinglasan
ABSTRACT Parthenin and parthenolide are natural products that are closely related in structure to artemisinin, which is also a sesquiterpene lactone (SQL) and one of the most important antimalarial drugs available. Parthenin, like artemisinin, has an effect on Plasmodium blood stage development. We extended the evaluation of parthenin as a potential therapeutic for the transmissible stages of Plasmodium falciparum as it transitions between human and mosquito, with the aim of gaining potential mechanistic insight into the inhibitory activity of this compound. We posited that if parthenin targets different biological pathways in the parasite, this in turn could pave the way for the development of druggable compounds that could prevent the spread of artemisinin-resistant parasites. We examined parthenins effect on male gamete activation and the ookinete-to-oocyst transition in the mosquito as well as on stage V gametocytes that are present in peripheral blood. Parthenin arrested parasite development for each of the stages tested. The broad inhibitory properties of parthenin on the evaluated parasite stages may suggest different mechanisms of action between parthenin and artemisinin. Parthenins cytotoxicity notwithstanding, its demonstrated activity in this study suggests that structurally related SQLs with a better safety profile deserve further exploration. We used our battery of assays to test parthenolide, which has a more compelling safety profile. Parthenolide demonstrated activity nearly identical to that of parthenin against P. falciparum, highlighting its potential as a possible transmission-blocking drug scaffold. We discuss the context of the evidence with respect to the next steps toward expanding the current antimalarial arsenal.
ACS Chemical Biology | 2016
Rebecca Pastrana-Mena; Derrick K. Mathias; Michael J. Delves; Krithika Rajaram; Jonas G. King; Rebecca Yee; Beatrice Trucchi; Luisella Verotta; Rhoel R. Dinglasan