Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rhoel R. Dinglasan is active.

Publication


Featured researches published by Rhoel R. Dinglasan.


PLOS Medicine | 2011

A research agenda for malaria eradication: drugs.

Pedro L. Alonso; Quique Bassat; Fred Binka; T Brewer; R Chandra; J. Culpepper; Rhoel R. Dinglasan; K Duncan; S Duparc; Mark M. Fukuda; R Laxminarayan; MacArthur; Magill A; C Marzetta; J. Milman; T Mutabingwa; François Nosten; S Nwaka; Myaing M. Nyunt; C Ohrt; Christopher V. Plowe; J Pottage; Ric N. Price; Pascal Ringwald; A. Serazin; Dennis Shanks; Robert E. Sinden; Marcel Tanner; H Vial; Sa Ward

The Malaria Eradication Research Agenda (malERA) Consultative Group on Drugs present a research and development agenda to ensure that appropriate drugs are available for use in malaria eradication.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen

Rhoel R. Dinglasan; Dario E. Kalume; Stefan M. Kanzok; Anil K. Ghosh; Olga Muratova; Akhilesh Pandey; Marcelo Jacobs-Lorena

Malaria parasites must undergo development within mosquitoes to be transmitted to a new host. Antivector transmission-blocking vaccines inhibit parasite development by preventing ookinete interaction with mosquito midgut ligands. Therefore, the discovery of novel midgut antigen targets is paramount. Jacalin (a lectin) inhibits ookinete attachment by masking glycan ligands on midgut epithelial surface glycoproteins. However, the identities of these midgut glycoproteins have remained unknown. Here we report on the molecular characterization of an Anopheles gambiae aminopeptidase N (AgAPN1) as the predominant jacalin target on the mosquito midgut luminal surface and provide evidence for its role in ookinete invasion. α-AgAPN1 IgG strongly inhibited both Plasmodium berghei and Plasmodium falciparum development in different mosquito species, implying that AgAPN1 has a conserved role in ookinete invasion of the midgut. Molecules targeting single midgut antigens seldom achieve complete abrogation of parasite development. However, the combined blocking activity of α-AgAPN1 IgG and an unrelated inhibitory peptide, SM1, against P. berghei was incomplete. We also found that SM1 can block only P. berghei, whereas α-AgAPN1 IgG can block both parasite species significantly. Therefore, we hypothesize that ookinetes can evade inhibition by two potent transmission-blocking molecules, presumably through the use of other ligands, and that this process further partitions murine from human parasite midgut invasion models. These results advance our understanding of malaria parasite–mosquito host interactions and guide in the design of transmission-blocking vaccines.


PLOS ONE | 2012

Mosquito Feeding Assays to Determine the Infectiousness of Naturally Infected Plasmodium falciparum Gametocyte Carriers

Teun Bousema; Rhoel R. Dinglasan; Isabelle Morlais; Louis C. Gouagna; Travis van Warmerdam; Parfait Awono-Ambene; Sarah Bonnet; Mouctar Diallo; Mamadou Coulibaly; Timoléon Tchuinkam; Bert Mulder; Geoff Targett; Chris Drakeley; Colin J. Sutherland; Vincent Robert; Ogobara K. Doumbo; Yeya Tiemoko Touré; Patricia M. Graves; Will Roeffen; Robert W. Sauerwein; Ashley Birkett; Emily Locke; Merribeth J. Morin; Yimin Wu; Thomas S. Churcher

Introduction In the era of malaria elimination and eradication, drug-based and vaccine-based approaches to reduce malaria transmission are receiving greater attention. Such interventions require assays that reliably measure the transmission of Plasmodium from humans to Anopheles mosquitoes. Methods We compared two commonly used mosquito feeding assay procedures: direct skin feeding assays and membrane feeding assays. Three conditions under which membrane feeding assays are performed were examined: assays with i) whole blood, ii) blood pellets resuspended with autologous plasma of the gametocyte carrier, and iii) blood pellets resuspended with heterologous control serum. Results 930 transmission experiments from Cameroon, The Gambia, Mali and Senegal were included in the analyses. Direct skin feeding assays resulted in higher mosquito infection rates compared to membrane feeding assays (odds ratio 2.39, 95% confidence interval 1.94–2.95) with evident heterogeneity between studies. Mosquito infection rates in membrane feeding assays and direct skin feeding assays were strongly correlated (p<0.0001). Replacing the plasma of the gametocyte donor with malaria naïve control serum resulted in higher mosquito infection rates compared to own plasma (OR 1.92, 95% CI 1.68–2.19) while the infectiousness of gametocytes may be reduced during the replacement procedure (OR 0.60, 95% CI 0.52–0.70). Conclusions Despite a higher efficiency of direct skin feeding assays, membrane feeding assays appear suitable tools to compare the infectiousness between individuals and to evaluate transmission-reducing interventions. Several aspects of membrane feeding procedures currently lack standardization; this variability makes comparisons between laboratories challenging and should be addressed to facilitate future testing of transmission-reducing interventions.


PLOS Medicine | 2011

A research agenda for malaria eradication: basic science and enabling technologies

Rogerio Amino; Quique Bassat; Jake Baum; Oliver Billker; Matthew Bogyo; Teun Bousema; G. K. Christophides; K. Deitsch; Rhoel R. Dinglasan; Abdoulaye Djimde; Manoj T. Duraisingh; F. Dzinjalamala; Christian T. Happi; Volker Heussler; J. Kramarik; T. de Koning-Ward; Marcus V. G. Lacerda; Miriam K. Laufer; P. Lim; Manuel Llinás; V. McGovern; Jesús Martínez-Barnetche; Maria M. Mota; Ivo Mueller; F. Okumu; Jason L. Rasgon; A. Serazin; P. K. Sharma; Robert E. Sinden; Dyann F. Wirth

The Malaria Eradication Research Agenda (malERA) consultative group on Basic Science and Enabling Technologies present a research and development agenda for basic research required for malaria eradication.


Insect Biochemistry and Molecular Biology | 2009

The Anopheles gambiae adult midgut peritrophic matrix proteome

Rhoel R. Dinglasan; Martin Devenport; Laurence Florens; Jeffrey R. Johnson; Ca McHugh; M Donnelly-Doman; Daniel J. Carucci; John R. Yates; Marcelo Jacobs-Lorena

Malaria is a devastating disease. For transmission to occur, Plasmodium, the causative agent of malaria, must complete a complex developmental cycle in its mosquito vector. Thus, the mosquito is a potential target for disease control. Plasmodium ookinetes, which develop within the mosquito midgut, must first cross the midguts peritrophic matrix (PM), a thick extracellular sheath that completely surrounds the blood meal. The PM poses a partial, natural barrier against parasite invasion of the midgut and it is speculated that modifications to the PM may lead to a complete barrier to infection. However, such strategies require thorough characterization of the structure of the PM. Here, we describe for the first time, the complete PM proteome of the main malaria vector, Anopheles gambiae. Altogether, 209 proteins were identified by mass spectrometry. Among them were nine new chitin-binding peritrophic matrix proteins, expanding the list from three to twelve peritrophins. Lastly, we provide a model for the putative interactions among the proteins identified in this study.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Plasmodium falciparum ookinetes require mosquito midgut chondroitin sulfate proteoglycans for cell invasion

Rhoel R. Dinglasan; Aditi Alaganan; Anil K. Ghosh; Akio Saito; Toin H. van Kuppevelt; Marcelo Jacobs-Lorena

Malaria transmission entails development of the Plasmodium parasite in its insect vector, the Anopheles mosquito. Parasite invasion of the mosquito midgut is the critical first step and involves adhesion to host epithelial cell ligands. Partial evidence suggests that midgut oligosaccharides are important ligands for parasite adhesion; however, the identity of these glycans remains unknown. We have identified a population of chondroitin glycosaminoglycans along the apical midgut microvilli of Anopheles gambiae and further demonstrated ookinete recognition of these glycans in vitro. By repressing the expression of the peptide-O-xylosyltransferase homolog of An. gambiae by means of RNA interference, we blocked glycosaminoglycan chain biosynthesis, diminished chondroitin sulfate levels in the adult midgut, and substantially inhibited parasite development. We provide evidence for the in vivo role of chondroitin sulfate proteoglycans in Plasmodium falciparum invasion of the midgut and insight into the molecular mechanisms mediating parasite–mosquito interactions.


Trends in Parasitology | 2008

Flipping the paradigm on malaria transmission-blocking vaccines

Rhoel R. Dinglasan; Marcelo Jacobs-Lorena

The idea of malaria transmission-blocking vaccines (TBVs) surfaced more than two decades ago. Since then, the research paradigm focused on developing TBVs that target surface antigens of parasite sexual stages. Only recently has an effort emerged that flipped this paradigm, targeting antigens of the parasites obligate invertebrate vector, the Anopheles mosquito. Here, we review the current state of knowledge of mosquito-based TBVs and discuss the utility of this approach for future vaccine development.


Infection and Immunity | 2003

Monoclonal Antibody MG96 Completely Blocks Plasmodium yoelii Development in Anopheles stephensi

Rhoel R. Dinglasan; Iesha Fields; Mohammed Shahabuddin; Abdu F. Azad; John B. Sacci

ABSTRACT In spite of research efforts to develop vaccines against the causative agent of human malaria, Plasmodium falciparum, effective control remains elusive. The predominant vaccine strategy focuses on targeting parasite blood stages in the vertebrate host. An alternative approach has been the development of transmission-blocking vaccines (TBVs). TBVs target antigens on parasite sexual stages that persist within the insect vector, anopheline mosquitoes, or target mosquito midgut proteins that are presumed to mediate parasite development. By blocking parasite development within the insect vector, TBVs effectively disrupt transmission and the resultant cascade of secondary infections. Using a mosquito midgut-specific mouse monoclonal antibody (MG96), we have partially characterized membrane-bound midgut glycoproteins in Anopheles gambiae and Anopheles stephensi. These proteins are present on the microvilli of midgut epithelial cells in both blood-fed and unfed mosquitoes, suggesting that the expression of the protein is not induced as a result of blood feeding. MG96 exhibits a dose-dependent blocking effect against Plasmodium yoelii development in An. stephensi. We achieved 100% blocking of parasite development in the mosquito midgut. Preliminary deglycosylation assays indicate that the epitope recognized by MG96 is a complex oligosaccharide. Future investigation of the carbohydrate epitope as well as gene identification should provide valuable insight into the possible mechanisms of ookinete attachment and invasion of mosquito midgut epithelial cells.


PLOS Pathogens | 2009

The Glutathione Biosynthetic Pathway of Plasmodium Is Essential for Mosquito Transmission

Joel Vega-Rodríguez; Blandine Franke-Fayard; Rhoel R. Dinglasan; Chris J. Janse; Rebecca Pastrana-Mena; Andrew P. Waters; Isabelle Coppens; José F. Rodríguez-Orengo; Marcelo Jacobs-Lorena; Adelfa E. Serrano

Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs− parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs− parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito.


Antimicrobial Agents and Chemotherapy | 2014

A Male and Female Gametocyte Functional Viability Assay To Identify Biologically Relevant Malaria Transmission-Blocking Drugs

Andrea Ruecker; Derrick K. Mathias; Ursula Straschil; Thomas S. Churcher; Rhoel R. Dinglasan; Didier Leroy; Robert E. Sinden; Michael J. Delves

ABSTRACT Malaria elimination will require interventions that prevent parasite transmission from the human host to the mosquito. Experimentally, this is usually determined by the expensive and laborious Plasmodium falciparum standard membrane feeding assay (PfSMFA), which has limited utility for high-throughput drug screening. In response, we developed the P. falciparum dual gamete formation assay (PfDGFA), which faithfully simulates the initial stages of the PfSMFA in vitro. It utilizes a dual readout that individually and simultaneously reports on the functional viability of male and female mature stage V gametocytes. To validate, we screen the Medicines for Malaria Venture (MMV) Malaria Box library with the PfDGFA. Unique to this assay, we find compounds that target male gametocytes only and also compounds with reversible and irreversible activity. Most importantly, we show that compound activity in the PfDGFA accurately predicts activity in PfSMFAs, which validates and supports its adoption into the transmission-stage screening pipeline.

Collaboration


Dive into the Rhoel R. Dinglasan's collaboration.

Top Co-Authors

Avatar

Marcelo Jacobs-Lorena

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dingyin Tao

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Morlais

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Jonas G. King

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge