Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Desika Narayanan is active.

Publication


Featured researches published by Desika Narayanan.


Monthly Notices of the Royal Astronomical Society | 2012

A general model for the CO–H2 conversion factor in galaxies with applications to the star formation law

Desika Narayanan; Mark R. Krumholz; Eve C. Ostriker; Lars Hernquist

The most common means of converting an observed CO line intensity into a molecular gas mass requires the use of a conversion factor (XCO). While in the Milky Way this quantity does not appear to vary significantly, there is good reason to believe that XCO will depend on the larger-scale galactic environment. With sensitive instruments pushing detections to increasingly high redshift, characterizing XCO as a function of physical conditions is crucial to our understanding of galaxy evolution. Utilizing numerical models, we investigate how varying metallicities, gas temperatures and velocity dispersions in galaxies impacts the way CO line emission traces the underlying H2 gas mass, and under what circumstances XCO may differ from the Galactic mean value. We find that, due to the combined effects of increased gas temperature and velocity dispersion, XCO is depressed below the Galactic mean in high surface density environments such as ultraluminous infrared galaxies (ULIRGs). In contrast, in low-metallicity environments, XCO tends to be higher than in the Milky Way, due to photodissociation of CO in metal-poor clouds. At higher redshifts, gas-rich discs may have gravitationally unstable clumps that are warm (due to increased star formation) and have elevated velocity dispersions. These discs tend to have XCO values ranging between present-epoch gas-rich mergers and quiescent discs at low z. This model shows that on average mergers do have lower XCO values than disc galaxies, though there is significant overlap. XCO varies smoothly with the local conditions within a galaxy, and is not a function of global galaxy morphology. We combine our results to provide a general fitting formula for XCO as a function of CO line intensity and metallicity. We show that replacing the traditional approach of using one constant XCO for starbursts and another for discs with our best-fitting function produces star formation laws that are continuous rather than bimodal, and that have significantly reduced scatter.


The Astrophysical Journal | 2011

WHAT DOES A SUBMILLIMETER GALAXY SELECTION ACTUALLY SELECT? THE DEPENDENCE OF SUBMILLIMETER FLUX DENSITY ON STAR FORMATION RATE AND DUST MASS

Christopher C. Hayward; Dušan Kereš; Patrik Jonsson; Desika Narayanan; Thomas J. Cox; Lars Hernquist

We perform 3-D dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux density (e.g., a & 16x boost in SFR yields a . 2x boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: 1. The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large (& 15”, or � 130 kpc at z = 2) beam of single-dish submm telescopes. 2. SMGs must be very massive (M⋆ & 6×10 10 M⊙). 3. The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible. Subject headings: galaxies: high-redshift — galaxies: interactions — galaxies: starburst — infrared: galaxies — radiative transfer — submillimeter: galaxies


Monthly Notices of the Royal Astronomical Society | 2013

Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium

Philip F. Hopkins; Thomas J. Cox; Lars Hernquist; Desika Narayanan; Christopher C. Hayward; Norman Murray

We use simulations with realistic models for stellar feedback to study galaxy mergers. These high resolution (1 pc) simulations follow formation and destruction of individual GMCs and star clusters. The final starburst is dominated by in situ star formation, fueled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self gravitating, and forms massive (~10^10 M_sun) GMCs and subsequent super-starclusters (masses up to 10^8 M_sun). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in superclusters which then sink to the center of the galaxy, because feedback efficiently disperses GMCs after they turn several percent of their mass into stars. Most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from IR photons, extend over seven decades in SFR to regulate star formation in the most extreme starbursts (densities >10^4 M_sun/pc^2). Feedback also drives super-winds with large mass loss rates; but a significant fraction of the wind material falls back onto the disks at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. Strong AGN feedback is required to explain sharp cutoffs in star formation rate. We compare the predicted relic structure, mass profile, morphology, and efficiency of disk survival to simulations which do not explicitly resolve GMCs or feedback. Global galaxy properties are similar, but sub-galactic properties and star formation rates can differ significantly.


Monthly Notices of the Royal Astronomical Society | 2010

The formation of high‐redshift submillimetre galaxies

Desika Narayanan; Christopher C. Hayward; Thomas J. Cox; Lars Hernquist; Patrik Jonsson; Joshua D. Younger; Brent Groves

We describe a model for the formation of z ∼ 2 Submillimeter Galaxies (SMGs) which simultaneously accounts for both average and bright SMGs while providing a reasonable match to their mean observed spectral energy distributions (SEDs). By coupling hydrodynamic simulations of galaxy mergers with the high resolution 3D polychromatic radiative transfer code SUNRISE, we find that a mass sequence of merger models which use observ ational constraints as physical input naturally yield objec ts which exhibit black hole, bulge, and H2 gas masses similar to those observed in SMGs. The dominant drivers behind the 850 µm flux are the masses of the merging galaxies and the stellar bir thcloud covering fraction. The most luminous (S850&15 mJy) sources are recovered by ∼10 13 M⊙ 1:1 major mergers with a birthcloud covering fraction close to unity, whereas more average SMGs (S850∼5‐7 mJy) may be formed in lower mass halos (∼5×10 12 M⊙ ). These models demonstrate the need for high spatial resolution hydrodynamic and radiative transfer simulations in matching both the most luminous sources as well as the full SEDs of SMGs. While these models suggest a natural formation mechanism for SMGs, they do not attempt to match cosmological statistics of galaxy populations; future efforts along this line will hel p ascertain the robustness of these models.


Monthly Notices of the Royal Astronomical Society | 2013

Submillimetre galaxies in a hierarchical universe: number counts, redshift distribution, and implications for the IMF

Christopher C. Hayward; Desika Narayanan; Dušan Kereš; Patrik Jonsson; Philip F. Hopkins; Thomas J. Cox; Lars Hernquist

High-redshift submillimetre galaxies (SMGs) are some of the most rapidly star-forming galaxies in the Universe. Historically, galaxy formation models have had difficulty explaining the observed number counts of SMGs. We combine a semi-empirical model with 3-D hydrodynamical simulations and 3-D dust radiative transfer to predict the number counts of unlensed SMGs. Because the stellar mass functions, gas and dust masses, and sizes of our galaxies are constrained to match observations, we can isolate uncertainties related to the dynamical evolution of galaxy mergers and the dust radiative transfer. The number counts and redshift distributions predicted by our model agree well with observations. Isolated disc galaxies dominate the faint (S1.1 . 1 mJy, or S850 . 2 mJy) population. The brighter sources are a mix of merger-induced starbursts and galaxy-pair SMGs; the latter subpopulation accounts for � 30 50 per cent of all SMGs at all S1.1 & 0.5 mJy (S850 & 1 mJy). The mean redshifts are � 3.0 3.5, depending on the flux cut, and the brightest sources tend to b e at higher redshifts. Because the galaxy-pair SMGs will be resolved into multiple fainter sources by ALMA, the bright ALMA counts should be as much as 2 times less than those observed using single-dish telescopes. The agreement between our model, which uses a Kroupa IMF, and observations suggests that the IMF in high-redshifts starbursts need not be top-heavy; if the IMF were top-heavy, our model would over-predict the number counts. We conclude that the difficulty some models have reproducing the observed SMG counts is likely indicative of more general problems ‐ such as an under-prediction of the abundance of massive galaxies or a star formation rate‐stellar mass relation normalisation lower than t hat observed ‐ rather than a problem specific to the SMG population.


The Astrophysical Journal | 2013

Herschel-ATLAS: A binary HyLIRG pinpointing a cluster of starbursting protoellipticals

R. J. Ivison; A. M. Swinbank; Ian Smail; A. I. Harris; R. S. Bussmann; A. Cooray; P. Cox; Hai Fu; A. Kovács; M. Krips; Desika Narayanan; M. Negrello; R. Neri; Jorge Peñarrubia; Johan Richard; Dominik A. Riechers; K. Rowlands; Johannes G. Staguhn; Thomas Targett; S. Amber; A. J. Baker; N. Bourne; Frank Bertoldi; M. N. Bremer; Jae Calanog; D. L. Clements; H. Dannerbauer; A. Dariush; G. De Zotti; Loretta Dunne

Panchromatic observations of the best candidate hyperluminous infrared galaxies from the widest Herschel extragalactic imaging survey have led to the discovery of at least four intrinsically luminous z = 2.41 galaxies across an 100 kpc region—a cluster of starbursting protoellipticals. Via subarcsecond interferometric imaging we have measured accurate gas and star formation surface densities. The two brightest galaxies span ~3 kpc FWHM in submillimeter/radio continuum and CO J = 4-3, and double that in CO J = 1-0. The broad CO line is due partly to the multitude of constituent galaxies and partly to large rotational velocities in two counter-rotating gas disks—a scenario predicted to lead to the most intense starbursts, which will therefore come in pairs. The disks have M_(dyn) of several × 10^(11) M ☉, and gas fractions of ~40%. Velocity dispersions are modest so the disks are unstable, potentially on scales commensurate with their radii: these galaxies are undergoing extreme bursts of star formation, not confined to their nuclei, at close to the Eddington limit. Their specific star formation rates place them 5 × above the main sequence, which supposedly comprises large gas disks like these. Their high star formation efficiencies are difficult to reconcile with a simple volumetric star formation law. N-body and dark matter simulations suggest that this system is the progenitor of a B(inary)-type 10^(14.6)-M ☉ cluster.


Monthly Notices of the Royal Astronomical Society | 2017

A deep ALMA image of the Hubble Ultra Deep Field

James Dunlop; Ross J. McLure; A. D. Biggs; J. E. Geach; M. J. Michałowski; R. J. Ivison; W. Rujopakarn; E. van Kampen; Allison Kirkpatrick; Alexandra Pope; D. Scott; A. M. Swinbank; Thomas Targett; I. Aretxaga; J. E. Austermann; Philip Best; Victoria Bruce; Edward L. Chapin; S. Charlot; Michele Cirasuolo; K. E. K. Coppin; Richard S. Ellis; Steven L. Finkelstein; Christopher C. Hayward; David H. Hughes; E. Ibar; P. Jagannathan; Sadegh Khochfar; M. P. Koprowski; Desika Narayanan

We present the results of the first, deep Atacama Large Millimeter Array (ALMA) imaging covering the full ≃4.5 arcmin2 of the Hubble Ultra Deep Field (HUDF) imaged with Wide Field Camera 3/IR on HST. Using a 45-pointing mosaic, we have obtained a homogeneous 1.3-mm image reaching σ1.3 ≃ 35 μJy, at a resolution of ≃0.7 arcsec. From an initial list of ≃50 > 3.5σ peaks, a rigorous analysis confirms 16 sources with S1.3 > 120 μJy. All of these have secure galaxy counterparts with robust redshifts (〈z〉 = 2.15). Due to the unparalleled supporting data, the physical properties of the ALMA sources are well constrained, including their stellar masses (M*) and UV+FIR star formation rates (SFR). Our results show that stellar mass is the best predictor of SFR in the high-redshift Universe; indeed at z ≥ 2 our ALMA sample contains seven of the nine galaxies in the HUDF with M* ≥ 2 × 1010 M⊙, and we detect only one galaxy at z > 3.5, reflecting the rapid drop-off of high-mass galaxies with increasing redshift. The detections, coupled with stacking, allow us to probe the redshift/mass distribution of the 1.3-mm background down to S1.3 ≃ 10 μJy. We find strong evidence for a steep star-forming ‘main sequence’ at z ≃ 2, with SFR ∝M* and a mean specific SFR ≃ 2.2 Gyr−1. Moreover, we find that ≃85 per cent of total star formation at z ≃ 2 is enshrouded in dust, with ≃65 per cent of all star formation at this epoch occurring in high-mass galaxies (M* > 2 × 1010 M⊙), for which the average obscured:unobscured SF ratio is ≃200. Finally, we revisit the cosmic evolution of SFR density; we find this peaks at z ≃ 2.5, and that the star-forming Universe transits from primarily unobscured to primarily obscured at z ≃ 4.


The Astrophysical Journal | 2008

Molecular Star Formation Rate Indicators in Galaxies

Desika Narayanan; Thomas J. Cox; Yancy L. Shirley; Romeel Davé; Lars Hernquist; Christopher K. Walker

We derive a physical model for the observed relations between star formation rate (SFR) and molecular line (CO and HCN) emission in galaxies and show how these observed relations are reflective of the underlying star formation law. We do this by combining 3D non-LTE radiative transfer calculations with hydrodynamic simulations of isolated disk galaxies and galaxy mergers. We demonstrate that the observed SFR-molecular line relations are driven by the relationship between molecular line emission and gas density and anchored by the index of the underlying Schmidt law controlling the SFR in the galaxy. Lines with low critical densities (e.g., CO -->J = 1–0) are typically thermalized and trace the gas density faithfully. In these cases, the SFR will be related to line luminosity with an index similar to the Schmidt law index. Lines with high critical densities greater than the mean density of most of the emitting clouds in a galaxy (e.g., CO -->J = 3–2, HCN -->J = 1–0) will have only a small amount of thermalized gas and consequently a superlinear relationship between molecular line luminosity ( -->Lmol) and mean gas density (


Monthly Notices of the Royal Astronomical Society | 2009

The star-forming molecular gas in high-redshift Submillimetre Galaxies

Desika Narayanan; Thomas J. Cox; Christopher C. Hayward; Joshua D. Younger; Lars Hernquist

o{n}


The Astrophysical Journal | 2009

ENHANCED DENSE GAS FRACTION IN ULTRALUMINOUS INFRARED GALAXIES

S. Juneau; Desika Narayanan; John Moustakas; Yancy L. Shirley; R. S. Bussmann; Robert C. Kennicutt; P. Vanden Bout

-->). This results in an SFR-line luminosity index less than the Schmidt index for high critical density tracers. One observational consequence of this is a significant redistribution of light from the small pockets of dense, thermalized gas to diffuse gas along the line of sight, and prodigious emission from subthermally excited gas. At the highest star formation rates, the SFR- -->Lmol slope tends to the Schmidt index, regardless of the molecular transition. The fundamental relation is the Kennicutt-Schmidt law, rather than the relation between SFR and molecular line luminosity. Our model for SFR-molecular line relations quantitatively reproduces the slopes of the observed SFR-CO ( -->J = 1–0), CO ( -->J = 3–2), and HCN ( -->J = 1–0) relations when a Schmidt law with index of ~1.5 describes the SFR. We use these results to make imminently testable predictions for the SFR-molecular line relations of unobserved transitions.

Collaboration


Dive into the Desika Narayanan's collaboration.

Top Co-Authors

Avatar

Lars Hernquist

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip F. Hopkins

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Romeel Davé

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar

C. L. Carilli

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caitlin M. Casey

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge