Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Désiré Sidibé is active.

Publication


Featured researches published by Désiré Sidibé.


Computer Methods and Programs in Biomedicine | 2012

A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images

Soumya Ghose; Arnau Oliver; Robert Martí; Xavier Lladó; Joan C. Vilanova; Jordi Freixenet; Jhimli Mitra; Désiré Sidibé; Fabrice Meriaudeau

Prostate segmentation is a challenging task, and the challenges significantly differ from one imaging modality to another. Low contrast, speckle, micro-calcifications and imaging artifacts like shadow poses serious challenges to accurate prostate segmentation in transrectal ultrasound (TRUS) images. However in magnetic resonance (MR) images, superior soft tissue contrast highlights large variability in shape, size and texture information inside the prostate. In contrast poor soft tissue contrast between prostate and surrounding tissues in computed tomography (CT) images pose a challenge in accurate prostate segmentation. This article reviews the methods developed for prostate gland segmentation TRUS, MR and CT images, the three primary imaging modalities that aids prostate cancer diagnosis and treatment. The objective of this work is to study the key similarities and differences among the different methods, highlighting their strengths and weaknesses in order to assist in the choice of an appropriate segmentation methodology. We define a new taxonomy for prostate segmentation strategies that allows first to group the algorithms and then to point out the main advantages and drawbacks of each strategy. We provide a comprehensive description of the existing methods in all TRUS, MR and CT modalities, highlighting their key-points and features. Finally, a discussion on choosing the most appropriate segmentation strategy for a given imaging modality is provided. A quantitative comparison of the results as reported in literature is also presented.


Medical Image Analysis | 2012

A spline-based non-linear diffeomorphism for multimodal prostate registration

Jhimli Mitra; Zoltan Kato; Robert Martí; Arnau Oliver; Xavier Lladó; Désiré Sidibé; Soumya Ghose; Joan C. Vilanova; Josep Comet; Fabrice Meriaudeau

This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively.


Computer Methods and Programs in Biomedicine | 2014

Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning

Kedir M. Adal; Désiré Sidibé; Sharib Ali; Edward Chaum; Thomas P. Karnowski; Fabrice Meriaudeau

Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier which can detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images.


Medical Image Analysis | 2013

A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images

Soumya Ghose; Arnau Oliver; Jhimli Mitra; Robert Martí; Xavier Lladó; Jordi Freixenet; Désiré Sidibé; Joan C. Vilanova; Josep Comet; Fabrice Meriaudeau

Prostate segmentation aids in prostate volume estimation, multi-modal image registration, and to create patient specific anatomical models for surgical planning and image guided biopsies. However, manual segmentation is time consuming and suffers from inter-and intra-observer variabilities. Low contrast images of trans rectal ultrasound and presence of imaging artifacts like speckle, micro-calcifications, and shadow regions hinder computer aided automatic or semi-automatic prostate segmentation. In this paper, we propose a prostate segmentation approach based on building multiple mean parametric models derived from principal component analysis of shape and posterior probabilities in a multi-resolution framework. The model parameters are then modified with the prior knowledge of the optimization space to achieve optimal prostate segmentation. In contrast to traditional statistical models of shape and intensity priors, we use posterior probabilities of the prostate region determined from random forest classification to build our appearance model, initialize and propagate our model. Furthermore, multiple mean models derived from spectral clustering of combined shape and appearance parameters are applied in parallel to improve segmentation accuracies. The proposed method achieves mean Dice similarity coefficient value of 0.91 ± 0.09 for 126 images containing 40 images from the apex, 40 images from the base and 46 images from central regions in a leave-one-patient-out validation framework. The mean segmentation time of the procedure is 0.67 ± 0.02 s.


Computerized Medical Imaging and Graphics | 2013

Statistical atlas based exudate segmentation

Sharib Ali; Désiré Sidibé; Kedir M. Adal; Luca Giancardo; Edward Chaum; Thomas P. Karnowski; Fabrice Meriaudeau

Diabetic macular edema (DME) is characterized by hard exudates. In this article, we propose a novel statistical atlas based method for segmentation of such exudates. Any test fundus image is first warped on the atlas co-ordinate and then a distance map is obtained with the mean atlas image. This leaves behind the candidate lesions. Post-processing schemes are introduced for final segmentation of the exudate. Experiments with the publicly available HEI-MED data-set shows good performance of the method. A lesion localization fraction of 82.5% at 35% of non-lesion localization fraction on the FROC curve is obtained. The method is also compared to few most recent reference methods.


Computers in Biology and Medicine | 2015

Discrimination of retinal images containing bright lesions using sparse coded features and SVM

Désiré Sidibé; Ibrahim Sadek; Fabrice Meriaudeau

Diabetic Retinopathy (DR) is a chronic progressive disease of the retinal microvasculature which is among the major causes of vision loss in the world. The diagnosis of DR is based on the detection of retinal lesions such as microaneurysms, exudates and drusen in retinal images acquired by a fundus camera. However, bright lesions such as exudates and drusen share similar appearances while being signs of different diseases. Therefore, discriminating between different types of lesions is of interest for improving screening performances. In this paper, we propose to use sparse coding techniques for retinal images classification. In particular, we are interested in discriminating between retinal images containing either exudates or drusen, and normal images free of lesions. Extensive experiments show that dictionary learning techniques can capture strong structures of retinal images and produce discriminant descriptors for classification. In particular, using a linear SVM with the obtained sparse coded features, the proposed method achieves superior performance as compared with the popular Bag-of-Visual-Word approach for image classification. Experiments with a dataset of 828 retinal images collected from various sources show that the proposed approach provides excellent discrimination results for normal, drusen and exudates images. It achieves a sensitivity and a specificity of 96.50% and 97.70% for the normal class; 99.10% and 100% for the drusen class; and 97.40% and 98.20% for the exudates class with a medium size dictionary of 100 atoms.


international conference on image processing | 2013

A performance evaluation of fusion techniques for spatio-temporal saliency detection in dynamic scenes

Satya M. Muddamsetty; Désiré Sidibé; Alain Trémeau; Fabrice Meriaudeau

Visual saliency is an important research topic in computer vision applications, which helps to focus on regions of interest instead of processing the whole image. Detecting visual saliency in still images has been widely addressed in literature. However, visual saliency detection in videos is more complicated due to additional temporal information. A spatio-temporal saliency map is usually obtained by the fusion of a static saliency map and a dynamic saliency map. The way both maps are fused plays a critical role in the accuracy of the spatio-temporal saliency map. In this paper, we evaluate the performances of different fusion techniques on a large and diverse dataset and the results show that a fusion method must be selected depending on the characteristics, in terms of color and motion contrasts, of a sequence. Overall, fusion techniques which take the best of each saliency map (static and dynamic) in the final spatio-temporal map achieve best results.


Proceedings of SPIE | 2013

Automated detection of microaneurysms using robust blob descriptors

Kedir M. Adal; Sharib Ali; Désiré Sidibé; Thomas P. Karnowski; Edward Chaum; Fabrice Meriaudeau

Microaneurysms (MAs) are among the first signs of diabetic retinopathy (DR) that can be seen as round dark-red structures in digital color fundus photographs of retina. In recent years, automated computer-aided detection and diagnosis (CAD) of MAs has attracted many researchers due to its low-cost and versatile nature. In this paper, the MA detection problem is modeled as finding interest points from a given image and several interest point descriptors are introduced and integrated with machine learning techniques to detect MAs. The proposed approach starts by applying a novel fundus image contrast enhancement technique using Singular Value Decomposition (SVD) of fundus images. Then, Hessian-based candidate selection algorithm is applied to extract image regions which are more likely to be MAs. For each candidate region, robust low-level blob descriptors such as Speeded Up Robust Features (SURF) and Intensity Normalized Radon Transform are extracted to characterize candidate MA regions. The combined features are then classified using SVM which has been trained using ten manually annotated training images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. Preliminary results show the competitiveness of the proposed candidate selection techniques against state-of-the art methods as well as the promising future for the proposed descriptors to be used in the localization of MAs from fundus images.


Pattern Recognition | 2018

A survey on Visual-Based Localization: On the benefit of heterogeneous data

Nathan Piasco; Désiré Sidibé; Cédric Demonceaux; Valérie Gouet-Brunet

Abstract We are surrounded by plenty of information about our environment. From these multiple sources, numerous data could be extracted: set of images, 3D model, coloured points cloud... When classical localization devices failed ( e.g. GPS sensor in cluttered environments), aforementioned data could be used within a localization framework. This is called Visual Based Localization (VBL). Due to numerous data types that can be collected from a scene, VBL encompasses a large amount of different methods. This paper presents a survey about recent methods that localize a visual acquisition system according to a known environment. We start by categorizing VBL methods into two distinct families: indirect and direct localization systems. As the localization environment is almost always dynamic, we pay special attention to methods designed to handle appearances changes occurring in a scene. Thereafter, we highlight methods exploiting heterogeneous types of data. Finally, we conclude the paper with a discussion on promising trends that could permit to a localization system to reach high precision pose estimation within an area as large as possible.


Journal of Ophthalmology | 2016

Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection

Guillaume Lemaitre; Mojdeh Rastgoo; Joan Massich; Carol Y. Cheung; Tien Yin Wong; Ecosse L. Lamoureux; Dan Milea; Fabrice Meriaudeau; Désiré Sidibé

This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with DME versus normal subjects. Optical Coherence Tomography (OCT) has been a valuable diagnostic tool for DME, which is among the most common causes of irreversible vision loss in individuals with diabetes. Here, a classification framework with five distinctive steps is proposed and we present an extensive study of each step. Our method considers combination of various preprocessing steps in conjunction with Local Binary Patterns (LBP) features and different mapping strategies. Using linear and nonlinear classifiers, we tested the developed framework on a balanced cohort of 32 patients. Experimental results show that the proposed method outperforms the previous studies by achieving a Sensitivity (SE) and a Specificity (SP) of 81.2% and 93.7%, respectively. Our study concludes that the 3D features and high-level representation of 2D features using patches achieve the best results. However, the effects of preprocessing are inconsistent with different classifiers and feature configurations.

Collaboration


Dive into the Désiré Sidibé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jhimli Mitra

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cédric Demonceaux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Fofi

University of Burgundy

View shared research outputs
Researchain Logo
Decentralizing Knowledge