Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Desmond N. Jackson is active.

Publication


Featured researches published by Desmond N. Jackson.


The FASEB Journal | 2004

The enigmatic protein kinase Cδ: complex roles in cell proliferation and survival

Desmond N. Jackson

Protein kinase Cδ (PKCδ) has been implicated both as a tumor suppressor and a positive regulator of cell cycle progression. PKCδ has also been reported to positively and negatively regulate apoptotic programs. This has led to conflicting hypotheses on the role of PKCδ in the control of cell proliferation and survival. Surprisingly PKCδ mice develop normally and are fertile indicating that PKCδ is not critical for normal cell proliferation during development. However PKCδ may play important roles in neoplastic cell proliferation. In this review we have summarized the apparent multifunctional properties of this enigmatic protein with regard to its role in the regulation of cell cycle progression and cell survival. It is proposed that PKCδ has both tumor suppressor and proliferation capabilities that can be recruited as a backup kinase for both gatekeeper tumor suppression and as an activator of the Ras/Raf/MEK/MAP kinase signaling pathway in cell proliferation.—Jackson D. N. Foster D. A. The enigmatic protein kinase Cδ: complex roles in cell proliferation and survival.


Biochemical and Biophysical Research Communications | 2003

Phospholipase D prevents apoptosis in v-Src-transformed rat fibroblasts and MDA-MB-231 breast cancer cells

Minghao Zhong; Yingjie Shen; Yang Zheng; Troy Joseph; Desmond N. Jackson

Phospholipase D (PLD) activity is elevated in response to mitogenic and oncogenic signals. PLD also cooperates with overexpressed tyrosine kinases to transform rat fibroblasts. 3Y1 rat fibroblasts overexpressing the tyrosine kinase c-Src undergo apoptosis in response to serum withdrawal. We report here that elevated expression of either PLD1 or PLD2 in these cells prevents apoptosis induced by serum withdrawal. 3Y1 cells transformed by the activated tyrosine kinase v-Src have elevated PLD activity and are resistant to apoptosis induced by serum withdrawal. However, if PLD activity is blocked, the v-Src-transformed cells underwent apoptosis. MDA-MB-231 cells are a human breast cancer cell line with substantially elevated levels of PLD activity. Inhibiting PLD activity in these cells similarly rendered them sensitive to the apoptotic insult of serum withdrawal. These data indicate that elevated PLD activity generates a survival signal(s) allowing cells to overcome default apoptosis programs.


Oncogene | 2005

Suppression of cell migration by protein kinase Cdelta.

Desmond N. Jackson; Yang Zheng; Donggon Lyo; Yinjie Shen; Keiko Nakayama; Keiichi I. Nakayama; Michael J. Humphries; Mary E. Reyland

The ability of cancer cells to migrate is strongly correlated with malignant progression and metastasis. Survival signals that suppress apoptosis have also been linked to increased cell motility. We previously reported that suppression of protein kinase Cδ (PKCδ) provided survival signals in a rat fibroblast model system. These studies have been extended to human breast cancer cells with differential cell motilities and PKCδ levels. BT-549 cells, which lack detectable expression of PKCδ, migrate very efficiently, whereas MCF-7 cells, which express high levels of PKCδ, migrate very poorly. Ectopic expression of PKCδ suppressed cell migration in the BT-549 cells, and downregulation of PKCδ enhanced cell migration in the MCF-7 cells. Downregulation of PKCδ in the MCF-7 cells also led to increased secretion of the matrix metalloprotease MMP-9. The migration of mouse embryo fibroblasts (MEFs) from wild type and PKCδ knockout mice was also examined and MEFs from PKCδ knockout mice had a five-fold increase in cell migration relative to the wild-type MEFs. These data provide evidence that PKCδ suppresses cell migration in both human breast cancer cells and in primary mouse fibroblasts, and indicate that the loss of PKCδ in human cancers could contribute to both cell survival and metastasis.


Molecular and Cellular Biology | 2003

Elevated Phospholipase D Activity in H-Ras- but Not K-Ras-Transformed Cells by the Synergistic Action of RalA and ARF6

Lizhong Xu; Paul Frankel; Desmond N. Jackson; Thuy Rotunda; Rita L. Boshans; Crislyn D'Souza-Schorey

ABSTRACT Phospholipase D (PLD) activity is elevated in response to the oncogenic stimulus of H-Ras but not K-Ras. H-Ras and K-Ras have been reported to localize to different membrane microdomains, with H-Ras localizing to caveolin-enriched light membrane fractions. We reported previously that PLD activity elevated in response to mitogenic stimulation is restricted to the caveolin-enriched light membrane fractions. PLD activity in H-Ras-transformed cells is dependent upon RalA, and consistent with a lack of elevated PLD activity in K-Ras-transformed cells, RalA was not activated in K-Ras-transformed cells. Although H-Ras-induced PLD activity is dependent upon RalA, an activated mutant of RalA is not sufficient to elevate PLD activity. We reported previously that RalA interacts with PLD activating ADP ribosylation factor (ARF) proteins. In cells transformed by H-Ras, we found increased coprecipitation of ARF6 with RalA. Moreover, ARF6 colocalized with RalA in light membrane fractions. Interestingly, ARF6 protein levels were elevated in H-Ras- but not K-Ras-transformed cells. A dominant-negative mutant of ARF6 inhibited PLD activity in H-Ras-transformed NIH 3T3 cells. Activated mutants of either ARF6 or RalA were not sufficient to elevate PLD activity in NIH 3T3 cells; however, expression of both activated RalA and activated ARF6 in NIH 3T3 cells led to increased PLD activity. These data suggest a model whereby H-Ras stimulates the activation of both RalA and ARF6, which together lead to the elevation of PLD activity.


New Journal of Science | 2014

Between Amyloids and Aggregation Lies a Connection with Strength and Adhesion

Peter N. Lipke; Caleen B. Ramsook; Melissa C. Garcia-Sherman; Desmond N. Jackson; Cho X. J. Chan; Michael Bois; Stephen A. Klotz

We tell of a journey that led to discovery of amyloids formed by yeast cell adhesins and their importance in biofilms and host immunity. We begin with the identification of the adhesin functional amyloid-forming sequences that mediate fiber formation in vitro. Atomic force microscopy and confocal microscopy show 2-dimensional amyloid “nanodomains” on the surface of cells that are activated for adhesion. These nanodomains are arrays of adhesin molecules that bind multivalent ligands with high avidity. Nanodomains form when adhesin molecules are stretched in the AFM or under laminar flow. Treatment with antiamyloid perturbants or mutation of the amyloid sequence prevents adhesion nanodomain formation and activation. We are now discovering biological consequences. Adhesin nanodomains promote formation and maintenance of biofilms, which are microbial communities. Also, in abscesses within candidiasis patients, we find adhesin amyloids on the surface of the fungi. In both human infection and a Caenorhabditis elegans infection model, the presence of fungal surface amyloids elicits anti-inflammatory responses. Thus, this is a story of how fungal adhesins respond to extension forces through formation of cell surface amyloid nanodomains, with key consequences for biofilm formation and host responses.


Biochemical and Biophysical Research Communications | 2002

Elevated phospholipase D activity induces apoptosis in normal rat fibroblasts.

Minghao Zhong; Troy Joseph; Desmond N. Jackson; Sergey Beychenok

Elevated expression of phospholipase D (PLD) in rat fibroblasts overexpressing a tyrosine kinase leads to cell transformation. However, it has been difficult to get elevated expression of PLD in normal rat fibroblasts. Using transient transfection and an inducible expression system, we were able to get elevated expression of PLD1 and PLD2 in 3Y1 rat fibroblasts. Elevated expression of either PLD1 or PLD2 in 3Y1 cells led to apoptosis in the absence of serum. Elevated PLD expression resulted in reduced cell viability and the cleavage of the caspase 3 substrates poly-ADP-ribose polymerase (PARP) and protein kinase C delta. Elevated PLD expression also stimulated cytochrome c release, indicating that the mitochondrial apoptosis pathway was activated. Thus, while elevated PLD expression can transform cells with elevated tyrosine kinase expression, elevated expression of PLD activity in normal cells renders cells sensitive to apoptotic insult.


Microbiology and Molecular Biology Reviews | 2017

Amyloid-Like β-Aggregates as Force-Sensitive Switches in Fungal Biofilms and Infections

Peter N. Lipke; Stephen A. Klotz; Yves F. Dufrêne; Desmond N. Jackson; Melissa C. Garcia-Sherman

SUMMARY Cellular aggregation is an essential step in the formation of biofilms, which promote fungal survival and persistence in hosts. In many of the known yeast cell adhesion proteins, there are amino acid sequences predicted to form amyloid-like β-aggregates. These sequences mediate amyloid formation in vitro. In vivo, these sequences mediate a phase transition from a disordered state to a partially ordered state to create patches of adhesins on the cell surface. These β-aggregated protein patches are called adhesin nanodomains, and their presence greatly increases and strengthens cell-cell interactions in fungal cell aggregation. Nanodomain formation is slow (with molecular response in minutes and the consequences being evident for hours), and strong interactions lead to enhanced biofilm formation. Unique among functional amyloids, fungal adhesin β-aggregation can be triggered by the application of physical shear force, leading to cellular responses to flow-induced stress and the formation of robust biofilms that persist under flow. Bioinformatics analysis suggests that this phenomenon may be widespread. Analysis of fungal abscesses shows the presence of surface amyloids in situ, a finding which supports the idea that phase changes to an amyloid-like state occur in vivo. The amyloid-coated fungi bind the damage-associated molecular pattern receptor serum amyloid P component, and there may be a consequential modulation of innate immune responses to the fungi. Structural data now suggest mechanisms for the force-mediated induction of the phase change. We summarize and discuss evidence that the sequences function as triggers for protein aggregation and subsequent cellular aggregation, both in vitro and in vivo.


mSphere | 2016

Force Sensitivity in Saccharomyces cerevisiae Flocculins.

Cho X. J. Chan; Sofiane El-Kirat-Chatel; Ivor G. Joseph; Desmond N. Jackson; Caleen B. Ramsook; Yves F. Dufrêne; Peter N. Lipke

The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications. ABSTRACT Many fungal adhesins have short, β-aggregation-prone sequences that play important functional roles, and in the Candida albicans adhesin Als5p, these sequences cluster the adhesins after exposure to shear force. Here, we report that Saccharomyces cerevisiae flocculins Flo11p and Flo1p have similar β-aggregation-prone sequences and are similarly stimulated by shear force, despite being nonhomologous. Shear from vortex mixing induced the formation of small flocs in cells expressing either adhesin. After the addition of Ca2+, yeast cells from vortex-sheared populations showed greatly enhanced flocculation and displayed more pronounced thioflavin-bright surface nanodomains. At high concentrations, amyloidophilic dyes inhibited Flo1p- and Flo11p-mediated agar invasion and the shear-induced increase in flocculation. Consistent with these results, atomic force microscopy of Flo11p showed successive force-distance peaks characteristic of sequentially unfolding tandem repeat domains, like Flo1p and Als5p. Flo11p-expressing cells bound together through homophilic interactions with adhesion forces of up to 700 pN and rupture lengths of up to 600 nm. These results are consistent with the potentiation of yeast flocculation by shear-induced formation of high-avidity domains of clustered adhesins at the cell surface, similar to the activation of Candida albicans adhesin Als5p. Thus, yeast adhesins from three independent gene families use similar force-dependent interactions to drive cell adhesion. IMPORTANCE The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications.


Antimicrobial Agents and Chemotherapy | 2015

Garcinia xanthochymus Benzophenones Promote Hyphal Apoptosis and Potentiate Activity of Fluconazole against Candida albicans Biofilms

Desmond N. Jackson; Lin Yang; Shi-Biao Wu; Edward J. Kennelly; Peter N. Lipke

ABSTRACT Xanthochymol and garcinol, isoprenylated benzophenones purified from Garcinia xanthochymus fruits, showed multiple activities against Candida albicans biofilms. Both compounds effectively prevented emergence of fungal germ tubes and were also cytostatic, with MICs of 1 to 3 μM. The compounds therefore inhibited development of hyphae and subsequent biofilm maturation. Xanthochymol treatment of developing and mature biofilms induced cell death. In early biofilm development, killing had the characteristics of apoptosis, including externalization of phosphatidyl serine and DNA fragmentation, as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) fluorescence. These activities resulted in failure of biofilm maturation and hyphal death in mature biofilms. In mature biofilms, xanthochymol and garcinol caused the death of biofilm hyphae, with 50% effective concentrations (EC50s) of 30 to 50 μM. Additionally, xanthochymol-mediated killing was complementary with fluconazole against mature biofilms, reducing the fluconazole EC50 from >1,024 μg/ml to 13 μg/ml. Therefore, xanthochymol has potential as an adjuvant for antifungal treatments as well as in studies of fungal apoptosis.


Mbio | 2016

The Human Disease-Associated Aβ Amyloid Core Sequence Forms Functional Amyloids in a Fungal Adhesin

Rachele D. Rameau; Desmond N. Jackson; Audrey Beaussart; Yves F. Dufrêne; Peter N. Lipke

ABSTRACT There is increasing evidence that many amyloids in living cells have physiological functions. On the surfaces of fungal cells, amyloid core sequences in adhesins can aggregate into 100- to 1,000-nm-wide patches to form high-avidity adhesion nanodomains on the cell surface. The nanodomains form through interactions that have amyloid-like properties: binding of amyloid dyes, perturbation by antiamyloid agents, and interaction with homologous sequences. To test whether these functional interactions are mediated by typical amyloid interactions, we substituted an amyloid core sequence, LVFFA, from human Aβ protein for the native sequence IVIVA in the 1,419-residue Candida albicans adhesin Als5p. The chimeric protein formed cell surface nanodomains and mediated cellular aggregation. The native sequence and chimeric adhesins responded similarly to the amyloid dye thioflavin T and to amyloid perturbants. However, unlike the native protein, the nanodomains formed by the chimeric protein were not force activated and formed less-robust aggregates under flow. These results showed the similarity of amyloid interactions in the amyloid core sequences of native Als5p and Aβ, but they also highlighted emergent properties of the native sequence. Also, a peptide composed of the Aβ amyloid sequence flanked by amino acids from the adhesin formed two-dimensional sheets with sizes similar to the cell surface patches of the adhesins. These results inform an initial model for the structure of fungal cell surface amyloid nanodomains. IMPORTANCE Protein amyloid aggregates are markers of neurodegenerative diseases such as Alzheimer’s and Parkinsonism. Nevertheless, there are also functional amyloids, including biofilm-associated amyloids in bacteria and fungi. In fungi, glycoprotein adhesins aggregate into cell surface patches through amyloid-like interactions, and the adhesin clustering strengthens cell-cell binding. These fungal surface amyloid nanodomains mediate biofilm persistence under flow, and they also moderate host inflammatory responses in fungal infections. To determine whether the amyloid-like properties of fungal surface nanodomains are sequence specific, we ask whether a disease-associated amyloid core sequence has properties equivalent to those of the native sequence in a fungal adhesin. A chimeric adhesin with an amyloid sequence from the Alzheimer’s disease protein Aβ instead of its native sequence effectively clustered the adhesins on the cell surface, but it showed a different response to hydrodynamic shear. These results begin an analysis of the sequence dependence for newly discovered activities for fungal surface amyloid nanodomains. Protein amyloid aggregates are markers of neurodegenerative diseases such as Alzheimer’s and Parkinsonism. Nevertheless, there are also functional amyloids, including biofilm-associated amyloids in bacteria and fungi. In fungi, glycoprotein adhesins aggregate into cell surface patches through amyloid-like interactions, and the adhesin clustering strengthens cell-cell binding. These fungal surface amyloid nanodomains mediate biofilm persistence under flow, and they also moderate host inflammatory responses in fungal infections. To determine whether the amyloid-like properties of fungal surface nanodomains are sequence specific, we ask whether a disease-associated amyloid core sequence has properties equivalent to those of the native sequence in a fungal adhesin. A chimeric adhesin with an amyloid sequence from the Alzheimer’s disease protein Aβ instead of its native sequence effectively clustered the adhesins on the cell surface, but it showed a different response to hydrodynamic shear. These results begin an analysis of the sequence dependence for newly discovered activities for fungal surface amyloid nanodomains.

Collaboration


Dive into the Desmond N. Jackson's collaboration.

Top Co-Authors

Avatar

Peter N. Lipke

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Yves F. Dufrêne

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Cho X. J. Chan

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Caleen B. Ramsook

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Ivor G. Joseph

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minghao Zhong

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Troy Joseph

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Yang Zheng

City University of New York

View shared research outputs
Researchain Logo
Decentralizing Knowledge