Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter N. Lipke is active.

Publication


Featured researches published by Peter N. Lipke.


Microbiology and Molecular Biology Reviews | 2007

A Biochemical Guide to Yeast Adhesins: Glycoproteins for Social and Antisocial Occasions

Anne M. Dranginis; Jason M. Rauceo; Juan E. Coronado; Peter N. Lipke

SUMMARY Fungi are nonmotile eukaryotes that rely on their adhesins for selective interaction with the environment and with other fungal cells. Glycosylphosphatidylinositol (GPI)-cross-linked adhesins have essential roles in mating, colony morphology, host-pathogen interactions, and biofilm formation. We review the structure and binding properties of cell wall-bound adhesins of ascomycetous yeasts and relate them to their effects on cellular interactions, with particular emphasis on the agglutinins and flocculins of Saccharomyces and the Als proteins of Candida. These glycoproteins share common structural motifs tailored to surface activity and biological function. After being secreted to the outer face of the plasma membrane, they are covalently anchored in the wall through modified GPI anchors, with their binding domains elevated beyond the wall surface on highly glycosylated extended stalks. N-terminal globular domains bind peptide or sugar ligands, with between millimolar and nanomolar affinities. These affinities and the high density of adhesins and ligands at the cell surface determine microscopic and macroscopic characteristics of cell-cell associations. Central domains often include Thr-rich tandemly repeated sequences that are highly glycosylated. These domains potentiate cell-to-cell binding, but the molecular mechanism of such an association is not yet clear. These repeats also mediate recombination between repeats and between genes. The high levels of recombination and epigenetic regulation are sources of variation which enable the population to continually exploit new niches and resources.


Molecular and Cellular Biology | 1989

AG alpha 1 is the structural gene for the Saccharomyces cerevisiae alpha-agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating.

Peter N. Lipke; D. Wojciechowicz; J Kurjan

We have cloned the alpha-agglutinin structural gene, AG alpha 1, by the isolation of alpha-specific agglutination-defective mutants, followed by isolation of a complementing plasmid. Independently isolated alpha-specific agglutination-defective mutations were in a single complementation group, consistent with biochemical results indicating that the alpha-agglutinin is composed of a single polypeptide. Mapping results suggested that the complementation group identified by these mutants is allelic to the ag alpha 1 mutation identified previously. Expression of AG alpha 1 RNA was alpha specific and inducible by a-factor. Sequences similar to the consensus sequences for positive control by MAT alpha 1 and pheromone induction were found upstream of the AG alpha 1 initiation codon. The AG alpha 1 gene could encode a 650-amino-acid protein with a putative signal sequence, 12 possible N-glycosylation sites, and a high proportion of serine and threonine residues, all of which are features expected for the alpha-agglutinin sequence. Disruption of the AG alpha 1 gene resulted in failure to express alpha-agglutinin and loss of cellular agglutinability in alpha cells. An Escherichia coli fusion protein containing 229 amino acids of the AG alpha 1 sequence was recognized by an anti-alpha-agglutinin antibody. In addition, the ability of this antibody to inhibit agglutination was prevented by this fusion protein. These results indicate that AG alpha 1 encodes alpha-agglutinin. Features of the AG alpha 1 gene product suggest that the amino-terminal half of the protein contains the a-agglutinin binding domain and that the carboxy-terminal half contains a cell surface localization domain, possibly including a glycosyl phosphatidylinositol anchor.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Force-induced formation and propagation of adhesion nanodomains in living fungal cells

David Alsteens; Melissa C. Garcia; Peter N. Lipke; Yves F. Dufrêne

Understanding how cell adhesion proteins form adhesion domains is a key challenge in cell biology. Here, we use single-molecule atomic force microscopy (AFM) to demonstrate the force-induced formation and propagation of adhesion nanodomains in living fungal cells, focusing on the covalently anchored cell-wall protein Als5p from Candida albicans. We show that pulling on single adhesins with AFM tips terminated with specific antibodies triggers the formation of adhesion domains of 100–500 nm and that the force-induced nanodomains propagate over the entire cell surface. Control experiments (with cells lacking Als5p, single-site mutation in the protein, bare tips, and tips modified with irrelevant antibodies) demonstrate that Als5p nanodomains result from protein redistribution triggered by force-induced conformational changes in the initially probed proteins, rather than from nonspecific cell-wall perturbations. Als5p remodeling is independent of cellular metabolic activity because heat-killed cells show the same behavior as live cells. Using AFM and fluorescence microscopy, we also find that nanodomains are formed within ∼30 min and migrate at a speed of ∼20 nm·min−1, indicating that domain formation and propagation are slow, time-dependent processes. These results demonstrate that mechanical stimuli can trigger adhesion nanodomains in fungal cells and suggest that the force-induced clustering of adhesins may be a mechanism for activating cell adhesion.


Molecular and Cellular Biology | 1994

A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin.

C F Lu; J Kurjan; Peter N. Lipke

Saccharomyces cerevisiae alpha-agglutinin is a cell wall-anchored adhesion glycoprotein. The previously identified 140-kDa form, which contains a glycosyl-phosphatidylinositol (GPI) anchor (D. Wojciechowicz, C.-F. Lu, J. Kurjan, and P. N. Lipke, Mol. Cell. Biol. 13:2554-2563, 1993), and additional forms of 80, 150, 250 to 300, and > 300 kDa had the properties of intermediates in a transport and cell wall anchorage pathway. N glycosylation and additional modifications resulted in successive increases in size during transport. The 150- and 250- to 300-kDa forms were membrane associated and are likely to be intermediates between the 140-kDa form and a cell surface GPI-anchored form of > 300 kDa. A soluble form of > 300 kDa that lacked the GPI anchor had properties of a periplasmic intermediate between the plasma membrane form and the > 300-kDa cell wall-anchored form. These results constitute experimental support for the hypothesis that GPI anchors act to localize alpha-agglutinin to the plasma membrane and that cell wall anchorage involves release from the GPI anchor to produce a periplasmic intermediate followed by linkage to the cell wall.


Molecular and Cellular Biology | 1993

Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin, a member of the immunoglobulin superfamily.

D. Wojciechowicz; Cha-Fen Lu; J Kurjan; Peter N. Lipke

alpha-Agglutinin is a cell adhesion glycoprotein expressed on the cell wall of Saccharomyces cerevisiae alpha cells. Binding of alpha-agglutinin to its ligand a-agglutinin, expressed by a cells, mediates cell-cell contact during mating. Analysis of truncations of the 650-amino-acid alpha-agglutinin structural gene AG alpha 1 delineated functional domains of alpha-agglutinin. Removal of the C-terminal hydrophobic sequence allowed efficient secretion of the protein and loss of cell surface attachment. This cell surface anchorage domain was necessary for linkage to a glycosyl phosphatidylinositol anchor. A construct expressing the N-terminal 350 amino acid residues retained full a-agglutinin-binding activity, localizing the binding domain to the N-terminal portion of alpha-agglutinin. A 278-residue N-terminal peptide was inactive; therefore, the binding domain includes residues between 278 and 350. The segment of alpha-agglutinin between amino acid residues 217 and 308 showed significant structural and sequence similarity to a consensus sequence for immunoglobulin superfamily variable-type domains. The similarity of the alpha-agglutinin-binding domain to mammalian cell adhesion proteins suggests that this structure is a highly conserved feature of adhesion proteins in diverse eukaryotes.


Infection and Immunity | 2008

The Antifungal Vaccine Derived from the Recombinant N Terminus of Als3p Protects Mice against the Bacterium Staphylococcus aureus

Brad Spellberg; Ashraf S. Ibrahim; Michael R. Yeaman; Lin Lin; Yue Fu; Valentina Avanesian; Arnold S. Bayer; Scott G. Filler; Peter N. Lipke; Henry Otoo; John E. Edwards

ABSTRACT Vaccination with the recombinant N terminus of the candidal adhesin Als3p (rAls3p-N) protects mice from lethal candidemia. Candidal Als3p also is structurally similar to the microbial surface components recognizing adhesive matrix molecule adhesin, clumping factor, from Staphylococcus aureus. To determine the potential for cross-kingdom vaccination, we immunized mice with rAls3p-N or negative control proteins and challenged them via the tail vein with S. aureus or other gram-positive or gram-negative pathogens. The rAls3p-N vaccine, but neither tetanus toxoid nor a related Als protein (Als5p), improved the survival of vaccinated mice subsequently infected with multiple clinical isolates of S. aureus, including methicillin-resistant strains. The rAls3p-N vaccine was effective against S. aureus when combined with aluminum hydroxide adjuvant. However, the vaccine did not improve the survival of mice infected with other bacterial pathogens. Vaccinated, infected mice mounted moderated type 1 immune responses. T lymphocyte-deficient mice were more susceptible to S. aureus infection, but B lymphocyte-deficient mice were not. Furthermore, T but not B lymphocytes from vaccinated mice mediated protection in adoptive transfer studies. The passive transfer of immune serum was not protective. These data provide the foundation for cross-kingdom vaccine development against S. aureus and Candida, which collectively cause 200,000 bloodstream infections resulting in ≥40,000 to 50,000 deaths annually in the United States alone.


Eukaryotic Cell | 2010

Yeast cell adhesion molecules have functional amyloid-forming sequences.

Caleen B. Ramsook; Cho Tan; Melissa C. Garcia; Raymond Fung; Gregory Soybelman; Ryan Henry; Anna Litewka; Shanique O'Meally; Henry Otoo; Roy A. Khalaf; Anne M. Dranginis; Nand K. Gaur; Stephen A. Klotz; Jason M. Rauceo; Chong K. Jue; Peter N. Lipke

ABSTRACT The occurrence of highly conserved amyloid-forming sequences in Candida albicans Als proteins (H. N. Otoo et al., Eukaryot. Cell 7:776–782, 2008) led us to search for similar sequences in other adhesins from C. albicans and Saccharomyces cerevisiae. The β-aggregation predictor TANGO found highly β-aggregation-prone sequences in almost all yeast adhesins. These sequences had an unusual amino acid composition: 77% of their residues were β-branched aliphatic amino acids Ile, Thr, and Val, which is more than 4-fold greater than their prevalence in the S. cerevisiae proteome. High β-aggregation potential peptides from S. cerevisiae Flo1p and C. albicans Eap1p rapidly formed insoluble amyloids, as determined by Congo red absorbance, thioflavin T fluorescence, and fiber morphology. As examples of the amyloid-forming ability of the native proteins, soluble glycosylphosphatidylinositol (GPI)-less fragments of C. albicans Als5p and S. cerevisiae Muc1p also formed amyloids within a few days under native conditions at nM concentrations. There was also evidence of amyloid formation in vivo: the surfaces of cells expressing wall-bound Als1p, Als5p, Muc1p, or Flo1p were birefringent and bound the fluorescent amyloid-reporting dye thioflavin T. Both of these properties increased upon aggregation of the cells. In addition, amyloid binding dyes strongly inhibited aggregation and flocculation. The results imply that amyloid formation is an intrinsic property of yeast cell adhesion proteins from many gene families and that amyloid formation is an important component of cellular aggregation mediated by these proteins.


Eukaryotic Cell | 2006

Threonine-Rich Repeats Increase Fibronectin Binding in the Candida albicans Adhesin Als5p

Jason M. Rauceo; Richard De Armond; Henry Otoo; Peter C. Kahn; Stephen A. Klotz; Nand K. Gaur; Peter N. Lipke

ABSTRACT Commensal and pathogenic states of Candida albicans depend on cell surface-expressed adhesins, including those of the Als family. Mature Als proteins consist of a 300-residue N-terminal region predicted to have an immunoglobulin (Ig)-like fold, a 104-residue conserved Thr-rich region (T), a central domain of a variable number of tandem repeats (TR) of a 36-residue Thr-rich sequence, and a heavily glycosylated C-terminal Ser/Thr-rich stalk region, also of variable length (N. K. Gaur and S. A. Klotz, Infect. Immun. 65: 5289-5294, 1997). Domain deletions in ALS5 were expressed in Saccharomyces cerevisiae to excrete soluble protein and for surface display. Far UV circular dichroism indicated that soluble Ig-T showed a single negative peak at 212 nm, consistent with previous data indicating that this region has high β-sheet content with very little α-helix. A truncation of Als5p with six tandem repeats (Ig-T-TR6) gave spectra with additional negative ellipticity at 200 nm and, at 227 to 240 nm, spectra characteristic of a structure with a similar fraction ofβ -sheet but with additional structural elements as well. Soluble Als5p Ig-T and Ig-T-TR6 fragments bound to fibronectin in vitro, but the inclusion of the TR region substantially increased affinity. Cellular adhesion assays with S. cerevisiae showed that the Ig-T domain mediated adherence to fibronectin and that TR repeats greatly increased cell-to-cell aggregation. Thus, the TR region of Als5p modulated the structure of the Ig-T region, augmented cell adhesion activity through increased binding to mammalian ligands, and simultaneously promoted fungal cell-cell interactions.


Eukaryotic Cell | 2008

Candida albicans Als Adhesins Have Conserved Amyloid-Forming Sequences

Henry Otoo; Kyeng Gea Lee; Wei-Gang Qiu; Peter N. Lipke

ABSTRACT The cell wall-bound Als adhesins of Candida albicans mediate both yeast-to-host tissue adherence and yeast aggregation. This aggregation is amyloid-like, with self-propagating secondary-structure changes, amyloid-characteristic dye binding, and induced birefringence (J. M. Rauceo, N. K. Gaur, K. G. Lee, J. E. Edwards, S. A. Klotz, and P. N. Lipke, Infect. Immun. 72:4948-4955, 2004). Therefore, we determined whether Als proteins could form amyloid fibers with properties like those in cellular aggregation. The β-aggregation predictor TANGO identified a heptapeptide sequence present in a highly conserved sequence with amyloid-forming potential in Als1p, Als3p, and Als5p. A tridecapeptide containing this sequence formed fibers that bound Congo red and thioflavin T and had characteristic amyloid morphology. Als5p20-431 and Als5p20-664, large fragments of Als5p containing the amyloid sequence, also formed amyloid-like fibers and bound Congo red under native conditions. Ka/Ks analysis showed that the amyloid-forming sequences are highly conserved in Als proteins and evolve more slowly than other regions of the proteins. Therefore, amyloid-forming ability itself is conserved in these proteins.


Trends in Cell Biology | 1994

Is there a role for GPIs in yeast cell-wall assembly?

Hans de Nobel; Peter N. Lipke

Glycosylphosphatidylinositol (GPI) membrane anchors are essential for the integration of yeast cell adhesion proteins into the cell wall, but mature cell-wall proteins are unlikely to be attached directly to the membrane. We thus propose that GPI-anchored glycoprotein forms are intermediates in a process that crosslinks the major components of the cell wall by transglycosylation. This mechanism may be critical for both the biosynthesis and overall architecture of the cell wall.

Collaboration


Dive into the Peter N. Lipke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves F. Dufrêne

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Alsteens

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Caleen B. Ramsook

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Desmond N. Jackson

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Jason M. Rauceo

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Audrey Beaussart

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Chong K. Jue

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Henry Otoo

City University of New York

View shared research outputs
Researchain Logo
Decentralizing Knowledge