Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Despina Tsorotes is active.

Publication


Featured researches published by Despina Tsorotes.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Plasma Lipidomic Analysis of Stable and Unstable Coronary Artery Disease

Peter J. Meikle; Gerard Wong; Despina Tsorotes; Christopher K. Barlow; Jacquelyn M. Weir; Michael J. Christopher; Gemma MacIntosh; Benjamin Goudey; Linda Stern; Adam Kowalczyk; Izhak Haviv; Anthony J. White; Anthony M. Dart; S. Duffy; Garry L. Jennings; Bronwyn A. Kingwell

Objective—Traditional risk factors for coronary artery disease (CAD) fail to adequately distinguish patients who have atherosclerotic plaques susceptible to instability from those who have more benign forms. Using plasma lipid profiling, this study aimed to provide insight into disease pathogenesis and evaluate the potential of lipid profiles to assess risk of future plaque instability. Methods and Results—Plasma lipid profiles containing 305 lipids were measured on 220 individuals (matched healthy controls, n=80; stable angina, n=60; unstable coronary syndrome, n=80) using electrospray-ionisation tandem mass spectrometry. ReliefF feature selection coupled with an L2-regularized logistic regression based classifier was used to create multivariate classification models which were verified via 3-fold cross-validation (1000 repeats). Models incorporating both lipids and traditional risk factors provided improved classification of unstable CAD from stable CAD (C-statistic=0.875, 95% CI 0.874–0.877) compared with models containing only traditional risk factors (C-statistic=0.796, 95% CI 0.795–0.798). Many of the lipids identified as discriminatory for unstable CAD displayed an association with disease acuity (severity), suggesting that they are antecedents to the onset of acute coronary syndrome. Conclusion—Plasma lipid profiling may contribute to a new approach to risk stratification for unstable CAD.


Circulation Research | 2010

Genetic Ace2 deficiency accentuates vascular inflammation and atherosclerosis in the ApoE knockout mouse.

Merlin C. Thomas; Raelene Pickering; Despina Tsorotes; A Koitka; Karen Sheehy; Stella Bernardi; Barbara Toffoli; Thu-Phuc Nguyen-Huu; Geoffrey A. Head; Yi Fu; Jaye Chin-Dusting; Mark E. Cooper; Chris Tikellis

Rationale: Angiotensin-converting enzyme (ACE)2 opposes the actions of angiotensin (Ang) II by degrading it to Ang 1-7. Objective: Given the important role of Ang II/Ang 1-7 in atherogenesis, we investigated the impact of ACE2 deficiency on the development of atherosclerosis. Methods and Results: C57Bl6, Ace2 knockout (KO), apolipoprotein E (ApoE) KO and ApoE/Ace2 double KO mice were followed until 30 weeks of age. Plaque accumulation was increased in ApoE/Ace2 double KO mice when compared to ApoE KO mice. This was associated with increased expression of adhesion molecules and inflammatory cytokines, including interleukin-6, monocyte chemoattractant protein-1, and vascular cell adhesion molecule-1, and an early increase in white cell adhesion across the whole aortae on dynamic flow assay. In the absence of a proatherosclerotic (ApoE KO) genotype, ACE2 deficiency was also associated with increased expression of these markers, suggesting that these differences were not an epiphenomenon. ACE inhibition prevented increases of these markers and atherogenesis in ApoE/ACE2 double KO mice. Bone marrow macrophages isolated from Ace2 KO mice showed increased proinflammatory responsiveness to lipopolysaccharide and Ang II when compared to macrophages isolated from C57Bl6 mice. Endothelial cells isolated from Ace2 KO mice also showed increased basal activation and elevated inflammatory responsiveness to TNF-&agr;. Similarly, selective inhibition of ACE2 with MLN-4760 also resulted in a proinflammatory phenotype with a physiological response similar to that observed with exogenous Ang II (10−7 mol/L). Conclusions: Genetic Ace2 deficiency is associated with upregulation of putative mediators of atherogenesis and enhances responsiveness to proinflammatory stimuli. In atherosclerosis-prone ApoE KO mice, these changes potentially contribute to increased plaque accumulation. These findings emphasize the potential utility of ACE2 repletion as a strategy to reduce atherosclerosis.


Diabetes | 2014

Dicarbonyl stress in the absence of hyperglycemia increases endothelial inflammation and atherogenesis similar to that observed in diabetes.

Chris Tikellis; Raelene Pickering; Despina Tsorotes; Olivier Huet; Mark E. Cooper; Karin Jandeleit-Dahm; Merlin C. Thomas

The deleterious effects of high glucose levels and enhanced metabolic flux on the vasculature are thought to be mediated by the generation of toxic metabolites, including reactive dicarbonyls like methylglyoxal (MG). In this article, we demonstrate that increasing plasma MG to levels observed in diabetic mice either using an exogenous source (1% in drinking water) or generated following inhibition, its primary clearance enzyme, glyoxalase-1 (with 50 mg/kg IP bromobenzyl-glutathione cyclopentyl diester every second day), was able to increase vascular adhesion and augment atherogenesis in euglycemic apolipoprotein E knockout mice to a similar magnitude as that observed in hyperglycemic mice with diabetes. The effects of MG appear partly mediated by activation of the receptor for advanced glycation end products (RAGE), as deletion of RAGE was able to reduce inflammation and atherogenesis associated with MG exposure. However, RAGE deletion did not completely prevent inflammation or vascular damage, possibly because the induction of mitochondrial oxidative stress by dicarbonyls also contributes to inflammation and atherogenesis. Such data would suggest that a synergistic combination of RAGE antagonism and antioxidants may offer the greatest utility for the prevention and management of diabetic vascular complications.


Hypertension | 2012

Activation of the Renin-Angiotensin System Mediates the Effects of Dietary Salt Intake on Atherogenesis in the Apolipoprotein E Knockout Mouse

Chris Tikellis; Raelene Pickering; Despina Tsorotes; Olivier Huet; Jaye Chin-Dusting; Mark E. Cooper; Merlin C. Thomas

Dietary salt intake is a major determinant of the activation state of renin-angiotensin-aldosterone system. Given the important role of the renin-angiotensin-aldosterone system in plaque accumulation, we investigated its role in the development of atherogenesis associated with sodium intake in apolipoprotein E knockout mice. Six-weeks of a low-salt diet (containing 0.03% sodium) resulted in a 4-fold increase in plaque accumulation in apolipoprotein E knockout mice when compared with mice receiving normal chow (containing 0.30% sodium). This was associated with activation of the renin-angiotensin-aldosterone system, increased vascular expression of adhesion molecules and inflammatory cytokines, and increased adhesion of labeled leukocytes across the whole aorta on a dynamic flow assay. These changes were blocked with the angiotensin-converting enzyme inhibitor perindopril (2 mg/kg per day). A high-salt diet (containing 3% sodium) attenuated vascular inflammation and atherogenesis, associated with suppression of the renin-angiotensin-aldosterone system, although systolic blood pressure levels were modestly increased (5±1 mmHg). Constitutive activation of the renin-angiotensin-aldosterone system in angiotensin-converting enzyme 2 apolipoprotein E knockout mice was also associated with increased atherosclerosis and vascular adhesion, and this was attenuated by a high-salt diet associated with suppression of the renin-angiotensin-aldosterone system. By contrast, a low-salt diet failed to further activate the renin-angiotensin-aldosterone system or to increase atherosclerosis in angiotensin-converting enzyme 2 apolipoprotein E knockout mice. Together, these data validate a relationship between salt-mediated renin-angiotensin-aldosterone system activation and atherogenesis, which may partly explain the inconclusive or paradoxical findings of recent observational studies, despite clear effects on blood pressure.


Diabetes | 2012

Alagebrium Reduces Glomerular Fibrogenesis and Inflammation Beyond Preventing RAGE Activation in Diabetic Apolipoprotein E Knockout Mice

Anna Watson; Stephen P. Gray; Li Jiaze; Aino Soro-Paavonen; Benedict Wong; Mark E. Cooper; Angelika Bierhaus; Raelene Pickering; Christos Tikellis; Despina Tsorotes; Merlin C. Thomas; Karin Jandeleit-Dahm

Advanced glycation end products (AGEs) are important mediators of diabetic nephropathy that act through the receptor for AGEs (RAGE), as well as other mechanisms, to promote renal inflammation and glomerulosclerosis. The relative contribution of RAGE-dependent and RAGE-independent signaling pathways has not been previously studied in vivo. In this study, diabetic RAGE apoE double-knockout (KO) mice with streptozotocin-induced diabetes were treated with the AGE inhibitor, alagebrium (1 mg/kg/day), or the ACE inhibitor, quinapril (30 mg/kg/day), for 20 weeks, and renal parameters were assessed. RAGE deletion attenuated mesangial expansion, glomerular matrix accumulation, and renal oxidative stress associated with 20 weeks of diabetes. By contrast, inflammation and AGE accumulation associated with diabetes was not prevented. However, treatment with alagebrium in diabetic RAGE apoE KO mice reduced renal AGE levels and further reduced glomerular matrix accumulation. In addition, even in the absence of RAGE expression, alagebrium attenuated cortical inflammation, as denoted by the reduced expression of monocyte chemoattractant protein-1, intracellular adhesion molecule-1, and the macrophage marker cluster of differentiation molecule 11b. These novel findings confirm the presence of important RAGE-independent as well as RAGE-dependent signaling pathways that may be activated in the kidney by AGEs. This has important implications for the design of optimal therapeutic strategies for the prevention of diabetic nephropathy.


Atherosclerosis | 2011

Osteoprotegerin promotes vascular fibrosis via a TGF-β1 autocrine loop.

Barbara Toffoli; Raelene Pickering; Despina Tsorotes; Bo Wang; Stella Bernardi; Phillip Kantharidis; Bruno Fabris; Giorgio Zauli; Paola Secchiero; Merlin C. Thomas

BACKGROUND This study was designed to evaluate the potential role of osteoprotegerin (OPG) in arterial fibrosis. METHODS Aortic samples were analyzed after in vivo treatment of ApoE(-/-) mice with recombinant human OPG. Mouse vascular smooth muscle cells (VSMC) were exposed in vitro to recombinant OPG and analyzed for markers of inflammation and fibrosis, such as fibronectin, collagen I, III, IV and transforming growth factor-β1 (TGF-β1). Conversely, the potential modulation of endogenous OPG expression and release by VSMC was analyzed in response to different pro-atherosclerotic cytokines, TGF-β1, platelet derived growth factor (PDGF) and angiogensin II (Ang II). RESULTS In vivo treatment with human OPG induced signs of fibrosis and up-regulated the arterial expression of TGF-β1. Consistently, in vitro treatment of VSMC with human OPG induced the expression of fibronectin, collagen type I, III, IV, metalloprotein-2 (MMP-2) and MMP-9, as well as of TGF-β1. On the other hand, exposure to recombinant TGF-β1 promoted the expression/release of endogenous OPG and mediated the increase of OPG release induced by PDGF and Ang II in VSMC. CONCLUSIONS Taken together, these data support a pathogenic role for OPG in the development and progression of atherosclerotic lesions and suggest the existence of a vicious circle between TGF-β1 and OPG.


Clinical Science | 2012

Angiotensin-converting enzyme 2 regulates renal atrial natriuretic peptide through angiotensin-(1-7)

Stella Bernardi; Wendy C. Burns; Barbara Toffoli; Raelene Pickering; Maryio Sakoda; Despina Tsorotes; Edward Grixti; Elena Velkoska; Louise M. Burrell; Colin I. Johnston; Merlin C. Thomas; Bruno Fabris; Christos Tikellis

Deficiency of ACE2 (angiotensin-converting enzyme 2), which degrades Ang (angiotensin) II, promotes the development of glomerular lesions. However, the mechanisms explaining why the reduction in ACE2 is associated with the development of glomerular lesions have still to be fully clarified. We hypothesized that ACE2 may regulate the renoprotective actions of ANP (atrial natriuretic peptide). The aim of the present study was to investigate the effect of ACE2 deficiency on the renal production of ANP. We evaluated molecular and structural abnormalities, as well as the expression of ANP in the kidneys of ACE2-deficient mice and C57BL/6 mice. We also exposed renal tubular cells to AngII and Ang-(1-7) in the presence and absence of inhibitors and agonists of RAS (renin-angiotensin system) signalling. ACE2 deficiency resulted in increased oxidative stress, as well as pro-inflammatory and profibrotic changes. This was associated with a down-regulation of the gene and protein expression on the renal production of ANP. Consistent with a role for the ACE2 pathway in modulating ANP, exposing cells to either Ang-(1-7) or ACE2 or the Mas receptor agonist up-regulated ANP gene expression. This work demonstrates that ACE2 regulates renal ANP via the generation of Ang-(1-7). This is a new mechanism whereby ACE2 counterbalances the renal effects of AngII and which explains why targeting ACE2 may be a promising strategy against kidney diseases, including diabetic nephropathy.


Clinical Science | 2014

Role of bone-marrow- and non-bone-marrow-derived receptor for advanced glycation end-products (RAGE) in a mouse model of diabetes-associated atherosclerosis

Christine Koulis; Peter Kanellakis; Raelene Pickering; Despina Tsorotes; Andrew J. Murphy; Stephen P. Gray; Merlin C. Thomas; Karin Jandeleit-Dahm; Mark E. Cooper; Terri J. Allen

RAGE (receptor for advanced glycation end-products) is expressed on multiple cell types implicated in the progression of atherosclerosis and plays a role in DAA (diabetes-associated atherosclerosis). The aim of the present study was to determine the relative role of either BM (bone marrow)- or non-BM-derived RAGE in the pathogenesis of STZ (streptozotocin)-induced DAA. Male ApoE (apolipoprotein E)-null (ApoE-/-:RAGE+/+) and ApoE:RAGE-null (ApoE-/-:RAGE-/-) mice at 7 weeks of age were rendered diabetic with STZ. At 8 weeks of age, ApoE-/- and ApoE-/-:RAGE-/- control and diabetic mice received BM from either RAGE-null or RAGE-bearing mice, generating various chimaeras. After 10 and 20 weeks of diabetes, mice were killed and gene expression and atherosclerotic lesion formation were evaluated respectively. Deletion of RAGE in either the BM cells or non-BM cells both resulted in a significant attenuation in DAA, which was associated with reduced VCAM-1 (vascular cell adhesion molecule-1) expression and translated into reduced adhesion in vitro. In conclusion, the results of the present study highlight the importance of both BM- and non-BM-derived RAGE in attenuating the development of DAA.


Clinical Science | 2013

Association of dietary sodium intake with atherogenesis in experimental diabetes and with cardiovascular disease in patients with Type 1 diabetes

Chris Tikellis; Raelene Pickering; Despina Tsorotes; Harjutsalo; Lena M. Thorn; A Ahola; Johan Wadén; Nina Tolonen; Markku Saraheimo; Daniel Gordin; Carol Forsblom; Per-Henrik Groop; Mark E. Cooper; John Moran; Merlin C. Thomas

It is recommended that individuals with diabetes restrict their dietary sodium intake. However, although salt intake is correlated with BP (blood pressure), it also partly determines the activation state of the RAAS (renin-angiotensin-aldosterone system), a key mediator of diabetes-associated atherosclerosis. apoE KO (apolipoprotein E knockout) mice were allocated for the induction of diabetes with streptozotocin or citrate buffer (controls) and further randomized to isocaloric diets containing 0.05%, 0.3% or 3.1% sodium with or without the ACEi [ACE (angiotensin-converting enzyme) inhibitor] perindopril. After 6 weeks of study, plaque accumulation was quantified and markers of atherogenesis were assessed using RT-PCR (reverse transcription-PCR) and ELISA. The association of sodium intake and adverse cardiovascular and mortality outcomes were explored in 2648 adults with Type 1 diabetes without prior CVD (cardiovascular disease) from the FinnDiane study. A 0.05% sodium diet was associated with increased plaque accumulation in diabetic apoE KO mice, associated with activation of the RAAS. By contrast, a diet containing 3.1% sodium suppressed atherogenesis associated with suppression of the RAAS, with an efficacy comparable with ACE inhibition. In adults with Type 1 diabetes, low sodium intake was also associated with an increased risk of all-cause mortality and new-onset cardiovascular events. However, high sodium intake was also associated with adverse outcomes, leading to a J-shaped relationship overall. Although BP lowering is an important goal for the management of diabetes, off-target actions to activate the RAAS may contribute to an observed lack of protection from cardiovascular complications in patients with Type 1 diabetes with low sodium intake.


Clinical Science | 2012

Interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes

Chris Tikellis; Raelene Pickering; Despina Tsorotes; Xiao-Jun Du; Helen Kiriazis; Thu-Phuc Nguyen-Huu; Geoffrey A. Head; Mark E. Cooper; Merlin C. Thomas

Collaboration


Dive into the Despina Tsorotes's collaboration.

Top Co-Authors

Avatar

Raelene Pickering

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Cooper

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaye Chin-Dusting

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge