Detlef Gronau
University of Graz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Detlef Gronau.
American Mathematical Monthly | 2004
Detlef Gronau
(2004). The Spiral of Theodorus. The American Mathematical Monthly: Vol. 111, No. 3, pp. 230-237.
Results in Mathematics | 1994
Detlef Gronau; Janusz Matkowski
Let G: (0, ∞) → (0, ∞) be logarithmically concave on a neighbourhood of ∞ and suppose limx→∞ G(x + δ)/G(x) = 1 for some δ > 0. Then, the functional equation % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!
Results in Mathematics | 1993
Detlef Gronau
Results in Mathematics | 1994
Lothar Berg; Detlef Gronau
g(x+1)=G(x)\cdot g(x),\ \ \ x\in (0,\infty),
Mathematica Pannonica | 1993
Detlef Gronau; Janusz Matkowski
Aequationes Mathematicae | 1982
Detlef Gronau
admits, up to a multiplicative constant, at most one solution g: (0, ∞) → (0, ∞), geometrically convex on a neighbourhood of ∞. Sufficient conditions on G are given, for which also such a unique geometrically convex solution of (D) exists. This result improves the classical theorems of Bohr-Mollerup type and gives a new characterization of the gamma function and the q-gamma function for q ∈ (0, 1).
Aequationes Mathematicae | 1985
Detlef Gronau
Let IK be either IR or ℂ and D an open set of IK containing 0 and starlike with respect to 0 (i.e. an open interval containig 0 in the case IK = IR). If f: D » IK is a continuous function with fixed point 0, then under certain conditions stated below we can prove for the kn- th iterates of f the following asymptotic formula: 1% MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!
Aequationes Mathematicae | 2004
Detlef Gronau
Journal of Geometry | 2009
Jens Schwaiger; Detlef Gronau
f^{(kn)}\bigg({x \over n}\bigg )=\sum_{i-1}^r{1\over (nk)^i}\ f_i(kx)+o \bigg({1\over n^r}\bigg),
Aequationes Mathematicae | 2008
Detlef Gronau