Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Detlef Gronau is active.

Publication


Featured researches published by Detlef Gronau.


American Mathematical Monthly | 2004

The Spiral of Theodorus

Detlef Gronau

(2004). The Spiral of Theodorus. The American Mathematical Monthly: Vol. 111, No. 3, pp. 230-237.


Results in Mathematics | 1994

Geometrically Convex Solutions of Certain Difference Equations and Generalized Bohr-Mollerup Type Theorems

Detlef Gronau; Janusz Matkowski

Let G: (0, ∞) → (0, ∞) be logarithmically concave on a neighbourhood of ∞ and suppose limx→∞ G(x + δ)/G(x) = 1 for some δ > 0. Then, the functional equation % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!


Results in Mathematics | 1993

An Asymptotic Formula for the Iterates of a Function

Detlef Gronau


Results in Mathematics | 1994

Asymptotische LÖsungen Der Translationsgleichung

Lothar Berg; Detlef Gronau

g(x+1)=G(x)\cdot g(x),\ \ \ x\in (0,\infty),


Mathematica Pannonica | 1993

Geometrical convexity and generalizations of the Bohr-Mollerup theorem on the gamma function.

Detlef Gronau; Janusz Matkowski


Aequationes Mathematicae | 1982

Two iterative functional equations for power series

Detlef Gronau

admits, up to a multiplicative constant, at most one solution g: (0, ∞) → (0, ∞), geometrically convex on a neighbourhood of ∞. Sufficient conditions on G are given, for which also such a unique geometrically convex solution of (D) exists. This result improves the classical theorems of Bohr-Mollerup type and gives a new characterization of the gamma function and the q-gamma function for q ∈ (0, 1).


Aequationes Mathematicae | 1985

Über die multiplikative Translationsgleichung und idempotente Potenzreihenvektoren

Detlef Gronau

Let IK be either IR or ℂ and D an open set of IK containing 0 and starlike with respect to 0 (i.e. an open interval containig 0 in the case IK = IR). If f: D » IK is a continuous function with fixed point 0, then under certain conditions stated below we can prove for the kn- th iterates of f the following asymptotic formula: 1% MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!


Aequationes Mathematicae | 2004

Normal solutions of difference equations, Euler's functions and spirals

Detlef Gronau


Journal of Geometry | 2009

The Poincaré Model of Hyperbolic Geometry in an Arbitrary Real Inner Product Space and an Elementary Construction of Hyperbolic Triangles with Prescribed Angles

Jens Schwaiger; Detlef Gronau

f^{(kn)}\bigg({x \over n}\bigg )=\sum_{i-1}^r{1\over (nk)^i}\ f_i(kx)+o \bigg({1\over n^r}\bigg),


Aequationes Mathematicae | 2008

Difference equations, Euler’s summation formula and Hyers–Ulam stability

Detlef Gronau

Collaboration


Dive into the Detlef Gronau's collaboration.

Top Co-Authors

Avatar

Janusz Matkowski

University of Zielona Góra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge