Jens Schwaiger
University of Graz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jens Schwaiger.
Bulletin of The Korean Mathematical Society | 2008
Wolfgang Prager; Jens Schwaiger
Given an m ∈ N and two vector spaces V and W , a function f : V m → W is called multi-Jensen if it satisfies Jensen’s equation in each variable separately. In this paper we unify these m Jensen equations to obtain a single functional equation for f and prove its stability in the sense of Hyers-Ulam, using the so-called direct method.
Monatshefte für Mathematik | 1977
Ludwig Reich; Jens Schwaiger
AbstractLet ℂ〚X〛=ℂ〚X1,...,Xn〛 be the ring of formal power series inn indeterminates over ℂ. LetF:X→AX+B(X)=(F(1)(X),...,F(n)(X))∈(ℂ〚X〛)n denote an automorphism of ℂ〚X〛 and let ϱ1,...,ϱn be the eigenvalues of the linear partA ofF. We will say thatF has an analytic iteration (a. i.) if there exists a family (Ft(itX))t∈ℂ of automorphisms such thatFt(X) has coefficients analytic int and such thatF0=X,F1=F,Ft+t′=FtℴFt′ for allt,t′∈ℂ. Let now a setΛ=(lnϱ1,...,lnϱn) of determinations of the logarithms be given. We ask if there exists an a. i. ofF such that the eigenvalues of the linear partA(t) ofFt(X) are
Results in Mathematics | 1994
Wolfgang Förg-Rob; Jens Schwaiger
Aequationes Mathematicae | 1994
Jens Schwaiger
e^{\ln \varrho _1 t} ,...,e^{\ln \varrho _n t}
Aequationes Mathematicae | 1992
Jens Schwaiger
Aequationes Mathematicae | 1993
Wolfgang Förg-Rob; Jens Schwaiger
. We will give necessary and sufficient conditions forF to have such an a. i., namely thatF is conjugate to a semicanonical formN=T−1ℴFℴT such that inN(k)(X) there appear at most monomialsX1α1...Xnn
Aequationes Mathematicae | 1993
Franz Halter-Koch; Ludwig Reich; Jens Schwaiger
Archive | 2017
Jens Schwaiger
\ln \varrho _k = \sum\limits_{i = 1}^n {\alpha _i \ln } \varrho _i
Aequationes Mathematicae | 2005
Wolfgang Prager; Jens Schwaiger
Aequationes Mathematicae | 1980
Ludwig Reich; Jens Schwaiger
. This generalizes a result of Shl.Sternberg.