Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Detlef R.U. Knappe is active.

Publication


Featured researches published by Detlef R.U. Knappe.


Philosophical Transactions of the Royal Society B | 2009

Transport and release of chemicals from plastics to the environment and to wildlife.

Emma L. Teuten; Jovita M. Saquing; Detlef R.U. Knappe; Morton A. Barlaz; Susanne Jonsson; Annika Björn; Steven J. Rowland; Richard C. Thompson; Tamara S. Galloway; Rei Yamashita; Daisuke Ochi; Yutaka Watanuki; Charles J. Moore; Pham Hung Viet; Touch Seang Tana; Maricar Prudente; Ruchaya Boonyatumanond; Mohamad Pauzi Zakaria; Kongsap Akkhavong; Yuko Ogata; Hisashi Hirai; Satoru Iwasa; Kaoruko Mizukawa; Yuki Hagino; Ayako Imamura; Mahua Saha; Hideshige Takada

Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2′-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g–1 to µg g–1. Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub µg l–1 to mg l–1 and were correlated with the level of economic development.


Carbon | 2002

Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution

Lei Li; Patricia A. Quinlivan; Detlef R.U. Knappe

Abstract The objective of this research was to develop activated carbon selection criteria that assure the effective removal of trace organic contaminants from aqueous solution and to base the selection criteria on physical and chemical adsorbent characteristics. To systematically evaluate pore structure and surface chemistry effects, a matrix of activated carbon fibers (ACFs) with three activation levels and four surface chemistry levels was prepared and characterized. In addition, three granular activated carbons (GACs) were studied. Two common drinking water contaminants, relatively polar methyl tertiary-butyl ether (MTBE) and relatively nonpolar trichloroethene (TCE), served as adsorbate probes. TCE adsorbed primarily in micropores in the 7–10 A width range while MTBE adsorbed primarily in micropores in the 8–11 A width range. These results suggest that effective adsorbents should exhibit a large volume of micropores with widths that are about 1.3 to 1.8 times larger than the kinetic diameter of the target adsorbate. Hydrophobic adsorbents more effectively removed both TCE and MTBE from aqueous solution than hydrophilic adsorbents, a result that was explained by enhanced water adsorption on hydrophilic surfaces. To assure sufficient adsorbent hydrophobicity, the oxygen and nitrogen contents of an activated carbon should therefore sum to no more than about 2 to 3 mmol/g.


Carbon | 2002

Simultaneous adsorption of MIB and NOM onto activated carbon: II. Competitive effects

G Newcombe; J Morrison; C Hepplewhite; Detlef R.U. Knappe

The adsorption of an odour compound common in drinking water, 2-methylisoborneol (MIB), was studied on six activated carbons in the presence of six well-characterised natural organic matter (NOM) solutions. It was found that, although the carbons and the NOM solutions had a wide range of characteristics, the major competitive mechanism was the same in all cases. The low-molecular-weight NOM compounds were the most competitive, participating in direct competition with MIB for adsorption sites. Equivalent background compound calculations indicated a relatively low concentration of directly competing compounds in the NOM. Some evidence of pore blockage and/or restriction was also seen, with microporous carbons being the most affected by low-molecular-weight NOM and mesoporous carbons impacted by the higher-molecular-weight compounds.


Water Research | 2009

Removal of emerging contaminants of concern by alternative adsorbents

Alfred Rossner; Shane A. Snyder; Detlef R.U. Knappe

The effective removal of emerging contaminants of concern (ECCs) such as endocrine-disrupting chemicals, pharmaceutically active compounds, personal care products, and flame retardants is a desirable water treatment goal. In this study, one activated carbon, one carbonaceous resin, and two high-silica zeolites were studied to evaluate their effectiveness for the removal of an ECC mixture from lake water. Adsorption isotherm experiments were performed with a mixture of 28 ECCs at environmentally relevant concentrations ( approximately 200-900 ng/L). Among the tested adsorbents, activated carbon was the most effective, and activated carbon doses typically used for taste and odor control in drinking water (<10 mg/L) were sufficient to achieve a 2-log removal for most of the tested ECCs. The carbonaceous resin was less effective than the activated carbon because this adsorbent had a smaller volume of pores in the size range required for the adsorption of many ECCs ( approximately 6-9A). For the removal of ECC mixture constituents, zeolites were less effective than the carbonaceous adsorbents. Because zeolites contain pores of uniform size and shape, a few of the tested ECCs with matching pore size/shape requirements were well removed, but the adsorptive removal of others was negligible, even at zeolite doses of 100 mg/L. The results of this study demonstrate that effective adsorbents for the removal of a broad spectrum of ECCs from water should exhibit heterogeneity in pore size and shape and a large pore volume in the 6-9A size range.


Critical Reviews in Environmental Science and Technology | 2008

A Review of Chemical Warfare Agent Simulants for the Study of Environmental Behavior

Shannon L. Bartelt-Hunt; Detlef R.U. Knappe; Morton A. Barlaz

There is renewed interest in the environmental fate of chemical warfare agents attributable to the intensified threat of chemical weapons use in a terrorist attack. Knowledge of processes that influence the fate of agents such as distilled mustard, lewisite, tabun, sarin, soman, and VX in the environment is important for development of disposal strategies and for risk and exposure assessments. However, it is often necessary to conduct studies examining chemical agent behavior using simulants due to the toxicity of the agents and usage restrictions. The objective of this study was to review the physical–chemical properties and mammalian toxicity of compounds that can be used to simulate chemical agents and to identify the most appropriate compounds to simulate specific environmental fate processes, including hydrolysis, sorption, bioavailability, and volatilization.


Water Research | 2011

Characterization of natural organic matter adsorption in granular activated carbon adsorbers

Silvana Velten; Detlef R.U. Knappe; Jacqueline Traber; Hans-Peter Kaiser; Urs von Gunten; Markus Boller; Sébastien Meylan

The removal of natural organic matter (NOM) from lake water was studied in two pilot-scale adsorbers containing granular activated carbon (GAC) with different physical properties. To study the adsorption behavior of individual NOM fractions as a function of time and adsorber depth, NOM was fractionated by size exclusion chromatography (SEC) into biopolymers, humics, building blocks, and low molecular weight (LMW) organics, and NOM fractions were quantified by both ultraviolet and organic carbon detectors. High molecular weight biopolymers were not retained in the two adsorbers. In contrast, humic substances, building blocks and LMW organics were initially well and irreversibly removed, and their effluent concentrations increased gradually in the outlet of the adsorbers until a pseudo-steady state concentration was reached. Poor removal of biopolymers was likely a result of their comparatively large size that prevented access to the internal pore structure of the GACs. In both GAC adsorbers, adsorbability of the remaining NOM fractions, compared on the basis of partition coefficients, increased with decreasing molecular size, suggesting that increasingly larger portions of the internal GAC surface area could be accessed as the size of NOM decreased. Overall DOC uptake at pseudo-steady state differed between the two tested GACs (18.9 and 28.6 g-C/kg GAC), and the percent difference in DOC uptake closely matched the percent difference in the volume of pores with widths in the 1-50 nm range that was measured for the two fresh GACs. Despite the differences in NOM uptake capacity, individual NOM fractions were removed in similar proportions by the two GACs.


Water Research | 1997

The effect of preloading on rapid small-scale column test predictions of atrazine removal by GAC adsorbers

Detlef R.U. Knappe; Vernon L. Snoeyink; Pascal Roche; Maria Prados; Marie-Marguerite Bourbigot

Abstract Rapid small-scale column tests (RSSCTs) were evaluated for their ability to predict atrazine removal in pilot-scale granular activated carbon (GAC) adsorbers. The performance of both virgin and preloaded GACs was tested. Atrazine removal by virgin GAC was studied in post-filter adsorbers at Toulouse, France, and Choisy-le-Roi, France, using empty-bed contact times (EBCTs) of 10.3 and 14 min, respectively. For virgin GAC, RSSCTs successfully simulated atrazine removal over large-scale operating times of about 3.5–7 months. However, RSSCTs significantly overestimated atrazine removal at longer operating times. Atrazine removal by preloaded GAC was studied in pilot-scale post-filter adsorbers at Choisy-le-Roi, France, after preloading times of 5 months and 20 months. EBCTs were approximately 8.5 min. To describe the performance of pilot-scale adsorbers containing preloaded GAC, RSSCTs were initiated with virgin activated carbon, and preloading was simulated prior to the spiking of atrazine. For a pilot-scale adsorber containing GAC that had been preloaded for 5 months, the RSSCT data effectively described atrazine removal. However, the RSSCT was not successful in predicting atrazine removal by GAC after a preloading time of 20 months. Discrepancies between RSSCT and pilot data for long service times or after extended preloading periods may have been due to enhanced adsorption of background organic matter in the presence of oxygen. Overall, RSSCTs were judged to be most useful for predicting the initial performance of adsorbers containing virgin GAC.


Water Research | 2014

2,4-D adsorption to biochars: Effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data

Joshua P. Kearns; L.S. Wellborn; R.S. Summers; Detlef R.U. Knappe

Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications.


Water Research | 2012

Characteristics of competitive adsorption between 2-methylisoborneol and natural organic matter on superfine and conventionally sized powdered activated carbons

Yoshihiko Matsui; Tomoaki Yoshida; Soichi Nakao; Detlef R.U. Knappe; Taku Matsushita

When treating water with activated carbon, natural organic matter (NOM) is not only a target for adsorptive removal but also an inhibitory substance that reduces the removal efficiency of trace compounds, such as 2-methylisoborneol (MIB), through adsorption competition. Recently, superfine (submicron-sized) activated carbon (SPAC) was developed by wet-milling commercially available powdered activated carbon (PAC) to a smaller particle size. It was reported that SPAC has a larger NOM adsorption capacity than PAC because NOM mainly adsorbs close to the external adsorbent particle surface (shell adsorption mechanism). Thus, SPAC with its larger specific external surface area can adsorb more NOM than PAC. The effect of higher NOM uptake on the adsorptive removal of MIB has, however, not been investigated. Results of this study show that adsorption competition between NOM and MIB did not increase when NOM uptake increased due to carbon size reduction; i.e., the increased NOM uptake by SPAC did not result in a decrease in MIB adsorption capacity beyond that obtained as a result of NOM adsorption by PAC. A simple estimation method for determining the adsorbed amount of competing NOM (NOM that reduces MIB adsorption) is presented based on the simplified equivalent background compound (EBC) method. Furthermore, the mechanism of adsorption competition is discussed based on results obtained with the simplified EBC method and the shell adsorption mechanism. Competing NOM, which likely comprises a small portion of NOM, adsorbs in internal pores of activated carbon particles as MIB does, thereby reducing the MIB adsorption capacity to a similar extent regardless of adsorbent particle size. SPAC application can be advantageous because enhanced NOM removal does not translate into less effective removal of MIB. Molecular size distribution data of NOM suggest that the competing NOM has a molecular weight similar to that of the target compound.


Water Research | 2008

MTBE adsorption on alternative adsorbents and packed bed adsorber performance.

Alfred Rossner; Detlef R.U. Knappe

Widespread use of the fuel additive methyl tertiary-butyl ether (MTBE) has led to frequent MTBE detections in North American and European drinking water sources. The overall objective of this research was to evaluate the effectiveness of a silicalite zeolite, a carbonaceous resin, and a coconut-shell-based granular activated carbon (GAC) for the removal of MTBE from water. Isotherm and short bed adsorber tests were conducted in ultrapure water and river water to obtain parameters describing MTBE adsorption equilibria and kinetics and to quantify the effect of natural organic matter (NOM) on MTBE adsorption. Both the silicalite zeolite and the carbonaceous resin exhibited larger MTBE adsorption uptakes than the tested GAC. Surface diffusion coefficients describing intraparticle MTBE mass transfer rates were largest for the GAC and smallest for the carbonaceous resin. Pilot tests were conducted to verify MTBE breakthrough curve predictions obtained with the homogeneous surface diffusion model and to evaluate the effect of NOM preloading on packed bed adsorber performance. Results showed that GAC was the most cost-competitive adsorbent when considering adsorbent usage rate only; however, the useful life of an adsorber containing silicalite zeolite was predicted to be approximately 5-6 times longer than that of an equally sized adsorber containing GAC. Pilot column results also showed that NOM preloading did not impair the MTBE removal efficiency of the silicalite zeolite. Thus, it may be possible to regenerate spent silicalite with less energy-intensive methods than those required to regenerate GAC.

Collaboration


Dive into the Detlef R.U. Knappe's collaboration.

Top Co-Authors

Avatar

Morton A. Barlaz

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Brandon Byrns

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Steven Shannon

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Lindsay

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Joshua P. Kearns

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Jovita M. Saquing

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Lei Li

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Mei Sun

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Patricia A. Quinlivan

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge