Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deus Mjungu is active.

Publication


Featured researches published by Deus Mjungu.


Science | 2016

Cospeciation of gut microbiota with hominids

Andrew H. Moeller; Alejandro Caro-Quintero; Deus Mjungu; Alexander V. Georgiev; Elizabeth V. Lonsdorf; Martin N. Muller; Anne E. Pusey; Martine Peeters; Beatrice H. Hahn; Howard Ochman

Human-microbiota coevolution The bacteria that make their home in the intestines of modern apes and humans arose from ancient bacteria that colonized the guts of our common ancestors. Moeller et al. have developed a method to compare rapidly evolving gyrB gene sequences in fecal samples from humans and wild chimpanzees, bonobos, and gorillas (see the Perspective by Segre and Salafsky). Comparison of the gyrB phylogenies of major bacterial lineages reveals that they mostly match the apehominid phylogeny, except for some rare symbiont transfers between primate species. Gut bacteria therefore are not simply acquired from the environment, but have coevolved for millions of years with hominids to help shape our immune systems and development. Science, this issue p. 380; see also p. 350 Rapidly evolving gyrB gene sequences of gut microbes from humans, wild chimpanzees, bonobos, and gorillas show coevolution. The evolutionary origins of the bacterial lineages that populate the human gut are unknown. Here we show that multiple lineages of the predominant bacterial taxa in the gut arose via cospeciation with humans, chimpanzees, bonobos, and gorillas over the past 15 million years. Analyses of strain-level bacterial diversity within hominid gut microbiomes revealed that clades of Bacteroidaceae and Bifidobacteriaceae have been maintained exclusively within host lineages across hundreds of thousands of host generations. Divergence times of these cospeciating gut bacteria are congruent with those of hominids, indicating that nuclear, mitochondrial, and gut bacterial genomes diversified in concert during hominid evolution. This study identifies human gut bacteria descended from ancient symbionts that speciated simultaneously with humans and the African apes.


PLOS Pathogens | 2010

Impact of Simian Immunodeficiency Virus Infection on Chimpanzee Population Dynamics

Rebecca S. Rudicell; James Holland Jones; Emily E. Wroblewski; Gerald H. Learn; Yingying Li; Joel D. Robertson; Elizabeth Greengrass; Falk Grossmann; Shadrack Kamenya; Lilian Pintea; Deus Mjungu; Elizabeth V. Lonsdorf; Anna Mosser; Clarence L. Lehman; D. Anthony Collins; Brandon F. Keele; Jane Goodall; Beatrice H. Hahn; Anne E. Pusey; Michael L. Wilson

Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002–2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of −6.5% to −7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002–2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen.


Philosophical Transactions of the Royal Society B | 2015

‘Impact hunters’ catalyse cooperative hunting in two wild chimpanzee communities

Ian C. Gilby; Zarin Machanda; Deus Mjungu; Jeremiah Rosen; Martin N. Muller; Anne E. Pusey; Richard W. Wrangham

Even when hunting in groups is mutually beneficial, it is unclear how communal hunts are initiated. If it is costly to be the only hunter, individuals should be reluctant to hunt unless others already are. We used 70 years of data from three communities to examine how male chimpanzees ‘solve’ this apparent collective action problem. The ‘impact hunter’ hypothesis proposes that group hunts are sometimes catalysed by certain individuals that hunt more readily than others. In two communities (Kasekela and Kanyawara), we identified a total of five males that exhibited high hunt participation rates for their age, and whose presence at an encounter with red colobus monkeys increased group hunting probability. Critically, these impact hunters were observed to hunt first more often than expected by chance. We argue that by hunting first, these males dilute prey defences and create opportunities for previously reluctant participants. This by-product mutualism can explain variation in group hunting rates within and between social groups. Hunting rates declined after the death of impact hunter FG in Kasekela and after impact hunter MS stopped hunting frequently in Kanyawara. There were no impact hunters in the third, smaller community (Mitumba), where, unlike the others, hunting probability increased with the number of females present at an encounter with prey.


American Journal of Primatology | 2018

Destabilization of the gut microbiome marks the end-stage of simian immunodeficiency virus infection in wild chimpanzees

Hannah J. Barbian; Yingying Li; Miguel Ángel Ramírez; Zachary Klase; Iddi Lipende; Deus Mjungu; Andrew H. Moeller; Michael L. Wilson; Anne E. Pusey; Elizabeth V. Lonsdorf; Frederic D. Bushman; Beatrice H. Hahn

Enteric dysbiosis is a characteristic feature of progressive human immunodeficiency virus type 1 (HIV‐1) infection but has not been observed in simian immunodeficiency virus (SIVmac)‐infected macaques, including in animals with end‐stage disease. This has raised questions concerning the mechanisms underlying the HIV‐1 associated enteropathy, with factors other than virus infection, such as lifestyle and antibiotic use, implicated as playing possible causal roles. Simian immunodeficiency virus of chimpanzees (SIVcpz) is also associated with increased mortality in wild‐living communities, and like HIV‐1 and SIVmac, can cause CD4+ T cell depletion and immunodeficiency in infected individuals. Given the central role of the intestinal microbiome in mammalian health, we asked whether gut microbial constituents could be identified that are indicative of SIVcpz status and/or disease progression. Here, we characterized the gut microbiome of SIVcpz‐infected and ‐uninfected chimpanzees in Gombe National Park, Tanzania. Subjecting a small number of fecal samples (N = 9) to metagenomic (shotgun) sequencing, we found bacteria of the family Prevotellaceae to be enriched in SIVcpz‐infected chimpanzees. However, 16S rRNA gene sequencing of a larger number of samples (N = 123) failed to show significant differences in both the composition and diversity (alpha and beta) of gut bacterial communities between infected (N = 24) and uninfected (N = 26) chimpanzees. Similarly, chimpanzee stool‐associated circular virus (Chi‐SCV) and chimpanzee adenovirus (ChAdV) identified by metagenomic sequencing were neither more prevalent nor more abundant in SIVcpz‐infected individuals. However, fecal samples collected from SIVcpz‐infected chimpanzees within 5 months before their AIDS‐related death exhibited significant compositional changes in their gut bacteriome. These data indicate that SIVcpz‐infected chimpanzees retain a stable gut microbiome throughout much of their natural infection course, with a significant destabilization of bacterial (but not viral) communities observed only in individuals with known immunodeficiency within the last several months before their death. Am. J. Primatol. 80:e22515, 2018.


American Journal of Primatology | 2018

Socioecological correlates of clinical signs in two communities of wild chimpanzees (Pan troglodytes) at Gombe National Park, Tanzania

Elizabeth V. Lonsdorf; Thomas R. Gillespie; Tiffany M. Wolf; Iddi Lipende; Jane Raphael; Jared S. Bakuza; Carson M. Murray; Michael L. Wilson; Shadrack Kamenya; Deus Mjungu; D. Anthony Collins; Ian C. Gilby; Margaret A. Stanton; Karen A. Terio; Hannah J. Barbian; Yingying Li; Miguel Ángel Ramírez; Alexander Krupnick; Emily Seidl; Jane Goodall; Beatrice H. Hahn; Anne E. Pusey; Dominic A. Travis

Disease and other health hazards pose serious threats to the persistence of wild ape populations. The total chimpanzee population at Gombe National Park, Tanzania, has declined from an estimated 120 to 150 individuals in the 1960s to around 100 individuals by the end of 2013, with death associated with observable signs of disease as the leading cause of mortality. In 2004, we began a non‐invasive health‐monitoring program in the two habituated communities in the park (Kasekela and Mitumba) with the aim of understanding the prevalence of health issues in the population, and identifying the presence and impacts of various pathogens. Here we present prospectively collected data on clinical signs (observable changes in health) in the chimpanzees of the Kasekela (n = 81) and Mitumba (n = 32) communities over an 8‐year period (2005–2012). First, we take a population approach and analyze prevalence of clinical signs in five different categories: gastrointestinal system (diarrhea), body condition (estimated weight loss), respiratory system (coughing, sneezing etc.), wounds/lameness, and dermatologic issues by year, month, and community membership. Mean monthly prevalence of each clinical sign per community varied, but typically affected <10% of observed individuals. Secondly, we analyze the presence of clinical signs in these categories as they relate to individual demographic and social factors (age, sex, and dominance rank) and simian immunodeficiency virus (SIVcpz) infection status. Adults have higher odds of being observed with diarrhea, loss of body condition, and wounds or lameness when compared to immatures, while males have a higher probability of being observed with wounds or lameness than females. In contrast, signs of respiratory illness appear not to be related to chimpanzee‐specific factors and skin abnormalities are very rare. For a subset of known‐rank individuals, dominance rank predicts the probability of wounding/lameness in adult males, but does not predict any adverse clinical signs in adult females. Instead, adult females with SIVcpz infection are more likely to be observed with diarrhea, a finding that warrants further investigation. Comparable data are needed from other sites to determine whether the prevalence of clinical signs we observe are relatively high or low, as well as to more fully understand the factors influencing health of wild apes at both the population and individual level. Am. J. Primatol. 80:e22562, 2018.


Journal of Human Evolution | 2017

Predation by female chimpanzees: Toward an understanding of sex differences in meat acquisition in the last common ancestor of Pan and Homo

Ian C. Gilby; Zarin Machanda; Robert C. O'Malley; Carson M. Murray; Elizabeth V. Lonsdorf; Kara K. Walker; Deus Mjungu; Emily Otali; Martin N. Muller; Melissa Emery Thompson; Anne E. Pusey; Richard W. Wrangham

Among modern foraging societies, men hunt more than women, who mostly target relatively low-quality, reliable resources (i.e., plants). This difference has long been assumed to reflect human female reproductive constraints, particularly caring for and provisioning mates and offspring. Long-term studies of chimpanzees (Pan troglodytes) enable tests of hypotheses about the possible origins of human sex differences in hunting, prior to pair-bonding and regular provisioning. We studied two eastern chimpanzee communities (Kasekela, Mitumba) in Gombe, Tanzania and one (Kanyawara) in Kibale, Uganda. Relative to males, females had low hunting rates in all three communities, even where they encountered red colobus monkeys (the primary prey of chimpanzees) as often as males did. There was no evidence that clinging offspring hampered female hunting. Instead, consistent with the hypothesis that females should be more risk-averse than males, females at all three sites specialized in low-cost prey (terrestrial/sedentary prey at Gombe; black and white colobus monkeys at Kanyawara). Female dominance rank was positively correlated with red colobus hunting probability only at Kasekela, suggesting that those in good physical condition were less sensitive to the costs of possible failure. Finally, the potential for carcass appropriation by males deterred females at Kasekela (but not Kanyawara or Mitumba) from hunting in parties containing many adult males. Although chimpanzees are not direct analogs of the last common ancestor (LCA) of Pan and Homo, these results suggest that before the emergence of social obligations regarding sharing and provisioning, constraints on hunting by LCA females did not necessarily stem from maternal care. Instead, they suggest that a risk-averse foraging strategy and the potential for losing prey to males limited female predation on vertebrates. Sex differences in hunting behavior would likely have preceded the evolution of the sexual division of labor among modern humans.


bioRxiv | 2017

Extensive Regulatory Changes in Genes Affecting Vocal and Facial Anatomy Separate Modern from Archaic Humans

David Gokhman; Lily Agranat-Tamir; Genevieve Housman; Raquel García-Pérez; Malka Nissim-Rafinia; Swapan Mallick; Maria A Nieves-Colon; Heng Li; Songül Alpaslan-Roodenberg; Mario Novak; Hongcang Gu; Manuel Ferrando-Bernal; Pere Gelabert; Iddi Lipende; Ivanela Kondova; Ronald E. Bontrop; Ellen E. Quillen; Alexander Meissner; Anne C. Stone; Anne E. Pusey; Deus Mjungu; Leonid Kandel; Meir Liebergall; María E. Prada; Julio M. Vidal; Kay Prüfer; Johannes Krause; Benjamin Yakir; Svante Pääbo; Ron Pinhasi

Changes in gene regulation are broadly accepted as key drivers of phenotypic differences between closely related species. However, identifying regulatory changes that shaped human-specific traits is a very challenging task. Here, we use >60 DNA methylation maps of ancient and present-day human groups, as well as six chimpanzee maps, to detect regulatory changes that emerged in modern humans after the split from Neanderthals and Denisovans. We show that genes affecting vocalization and facial features went through particularly extensive methylation changes. Specifically, we identify silencing patterns in a network of genes (SOX9, ACAN, COL2A1 and NFIX), and propose that they might have played a role in the reshaping of the human face, and in forming the 1:1 vocal tract configuration that is considered optimal for speech. Our results provide insights into the molecular mechanisms that may have shaped the modern human face and voice, and suggest that they arose after the split from Neanderthals and Denisovans.Summary Regulatory changes are broadly accepted as key drivers of phenotypic divergence. However, identifying regulatory changes that underlie human-specific traits has proven very challenging. Here, we use 63 DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that emerged in modern humans after the split from Neanderthals and Denisovans. We show that genes affecting the face and vocal tract went through particularly extensive methylation changes. Specifically, we identify widespread hypermethylation in a network of face- and voice-affecting genes (SOX9, ACAN, COL2A1, NFIX and XYLT1). We propose that these repression patterns appeared after the split from Neanderthals and Denisovans, and that they might have played a key role in shaping the modern human face and vocal tract.Identifying changes in gene regulation that shaped human-specific traits is critical to understanding human adaptation. Here, we use dozens of ancient and present-day DNA methylation maps to detect regulatory changes that emerged in modern humans. We show that genes affecting vocalization and facial features went through particularly extensive changes in methylation. Especially, we identify expansive changes in a network of genes regulating skeletal development (SOX9, ACAN and COL2A1), and in NFIX, which controls facial projection and voice box (larynx) development. We propose that these changes played a key role in shaping the human face, and in forming the human 1:1 vocal tract configuration that is considered optimal for speech. Our results provide insights into the molecular mechanisms that shaped the modern human face and voice, and suggest that they arose after the split from Neanderthals and Denisovans.


Scientific Data | 2017

Personality in the chimpanzees of Gombe National Park

Alexander Weiss; Michael L. Wilson; D. Anthony Collins; Deus Mjungu; Shadrack Kamenya; Steffen Foerster; Anne E. Pusey

Researchers increasingly view animal personality traits as products of natural selection. We present data that describe the personalities of 128 eastern chimpanzees (Pan troglodytes schweinfurthii) currently living in or who lived their lives in the Kasekela and Mitumba communities of Gombe National Park, Tanzania. We obtained ratings on 24 items from an established, reliable, well-validated questionnaire used to study personality in captive chimpanzee populations. Ratings were made by former and present Tanzanian field assistants who followed individual chimpanzees for years and collected detailed behavioral observations. Interrater reliabilities across items ranged from acceptable to good, but the personality dimensions they formed were not as interpretable as those from captive samples. However, the personality dimensions corresponded to ratings of 24 Kasekela chimpanzees on a different questionnaire in 1973 that assessed some similar traits. These correlations established the repeatability and construct validity of the present ratings, indicating that the present data can facilitate historical and prospective studies that will lead to better understanding of the evolution of personality in chimpanzees and other primates.


Mbio | 2018

Allometry and Ecology of the Bilaterian Gut Microbiome.

Scott Sherrill-Mix; Kevin McCormick; Abigail Lauder; Aubrey Bailey; Laurie Zimmerman; Yingying Li; Jean-Bosco N. Django; Paco Bertolani; Christelle Colin; John Hart; Terese B. Hart; Alexander V. Georgiev; Crickette M. Sanz; David Morgan; Rebeca Atencia; Debby Cox; Martin N. Muller; Volker Sommer; Alex K. Piel; Fiona A. Stewart; Sheri Speede; Joe Roman; Gary D. Wu; Josh Taylor; Rudolf P. Bohm; Heather Marshall Rose; John K. Carlson; Deus Mjungu; Paul S. Schmidt; Celeste Gaughan

ABSTRACT Classical ecology provides principles for construction and function of biological communities, but to what extent these apply to the animal-associated microbiota is just beginning to be assessed. Here, we investigated the influence of several well-known ecological principles on animal-associated microbiota by characterizing gut microbial specimens from bilaterally symmetrical animals (Bilateria) ranging from flies to whales. A rigorously vetted sample set containing 265 specimens from 64 species was assembled. Bacterial lineages were characterized by 16S rRNA gene sequencing. Previously published samples were also compared, allowing analysis of over 1,098 samples in total. A restricted number of bacterial phyla was found to account for the great majority of gut colonists. Gut microbial composition was associated with host phylogeny and diet. We identified numerous gut bacterial 16S rRNA gene sequences that diverged deeply from previously studied taxa, identifying opportunities to discover new bacterial types. The number of bacterial lineages per gut sample was positively associated with animal mass, paralleling known species-area relationships from island biogeography and implicating body size as a determinant of community stability and niche complexity. Samples from larger animals harbored greater numbers of anaerobic communities, specifying a mechanism for generating more-complex microbial environments. Predictions for species/abundance relationships from models of neutral colonization did not match the data set, pointing to alternative mechanisms such as selection of specific colonists by environmental niche. Taken together, the data suggest that niche complexity increases with gut size and that niche selection forces dominate gut community construction. IMPORTANCE The intestinal microbiome of animals is essential for health, contributing to digestion of foods, proper immune development, inhibition of pathogen colonization, and catabolism of xenobiotic compounds. How these communities assemble and persist is just beginning to be investigated. Here we interrogated a set of gut samples from a wide range of animals to investigate the roles of selection and random processes in microbial community construction. We show that the numbers of bacterial species increased with the weight of host organisms, paralleling findings from studies of island biogeography. Communities in larger organisms tended to be more anaerobic, suggesting one mechanism for niche diversification. Nonselective processes enable specific predictions for community structure, but our samples did not match the predictions of the neutral model. Thus, these findings highlight the importance of niche selection in community construction and suggest mechanisms of niche diversification. The intestinal microbiome of animals is essential for health, contributing to digestion of foods, proper immune development, inhibition of pathogen colonization, and catabolism of xenobiotic compounds. How these communities assemble and persist is just beginning to be investigated. Here we interrogated a set of gut samples from a wide range of animals to investigate the roles of selection and random processes in microbial community construction. We show that the numbers of bacterial species increased with the weight of host organisms, paralleling findings from studies of island biogeography. Communities in larger organisms tended to be more anaerobic, suggesting one mechanism for niche diversification. Nonselective processes enable specific predictions for community structure, but our samples did not match the predictions of the neutral model. Thus, these findings highlight the importance of niche selection in community construction and suggest mechanisms of niche diversification.


American Journal of Physical Anthropology | 2018

Infanticide in chimpanzees: Taphonomic case studies from Gombe

Claire A. Kirchhoff; Michael L. Wilson; Deus Mjungu; Jane Raphael; Shadrack Kamenya; D. Anthony Collins

OBJECTIVES We present a study of skeletal damage to four chimpanzee (Pan troglodytes) infanticide victims from Gombe National Park, Tanzania. Skeletal analysis may provide insight into the adaptive significance of infanticide by examining whether nutritional benefits sufficiently explain infanticidal behavior. The nutritional hypothesis would be supported if bone survivorship rates and skeletal damage patterns are comparable to those of monkey prey. If not, other explanations, such as the resource competition hypothesis, should be considered. METHODS Taphonomic assessment of two chimpanzee infants included description of breakage and surface modification, data on MNE, %MNE, and bone survivorship. Two additional infants were assessed qualitatively. The data were compared to published information on monkey prey. We also undertook a review of published infanticide cases. RESULTS The cases were intercommunity infanticides (one male and three female infants) committed by males. Attackers partially consumed two of the victims. Damage to all four infants included puncture marks and compression fractures to the cranium, crenulated breaks to long bones, and incipient fractures on ribs. Compared to monkey prey, the chimpanzee infants had an abundance of vertebrae and hand/foot bones. CONCLUSIONS The cases described here suggest that chimpanzees may not always completely consume infanticide victims, while reports on chimpanzee predation indicated that complete consumption of monkey prey usually occurred. Infanticidal chimpanzees undoubtedly gain nutritional benefits when they consume dead infants, but this benefit may not sufficiently explain infanticide in this species. Continued study of infanticidal and hunting behavior, including skeletal analysis, is likely to be of interest.

Collaboration


Dive into the Deus Mjungu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice H. Hahn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ian C. Gilby

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yingying Li

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge