Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shadrack Kamenya is active.

Publication


Featured researches published by Shadrack Kamenya.


Nature | 2009

Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz

Brandon F. Keele; James Holland Jones; Karen A. Terio; Jacob D. Estes; Rebecca S. Rudicell; Michael L. Wilson; Yingying Li; Gerald H. Learn; T. Mark Beasley; Joann Schumacher-Stankey; Emily E. Wroblewski; Anna Mosser; Jane Raphael; Shadrack Kamenya; Elizabeth V. Lonsdorf; Dominic A. Travis; Titus Mlengeya; Michael J. Kinsel; James G. Else; Guido Silvestri; Jane Goodall; Paul M. Sharp; George M. Shaw; Anne E. Pusey; Beatrice H. Hahn

African primates are naturally infected with over 40 different simian immunodeficiency viruses (SIVs), two of which have crossed the species barrier and generated human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Unlike the human viruses, however, SIVs do not generally cause acquired immunodeficiency syndrome (AIDS) in their natural hosts. Here we show that SIVcpz, the immediate precursor of HIV-1, is pathogenic in free-ranging chimpanzees. By following 94 members of two habituated chimpanzee communities in Gombe National Park, Tanzania, for over 9 years, we found a 10- to 16-fold higher age-corrected death hazard for SIVcpz-infected (n = 17) compared to uninfected (n = 77) chimpanzees. We also found that SIVcpz-infected females were less likely to give birth and had a higher infant mortality rate than uninfected females. Immunohistochemistry and in situ hybridization of post-mortem spleen and lymph node samples from three infected and two uninfected chimpanzees revealed significant CD4+ T-cell depletion in all infected individuals, with evidence of high viral replication and extensive follicular dendritic cell virus trapping in one of them. One female, who died within 3 years of acquiring SIVcpz, had histopathological findings consistent with end-stage AIDS. These results indicate that SIVcpz, like HIV-1, is associated with progressive CD4+ T-cell loss, lymphatic tissue destruction and premature death. These findings challenge the prevailing view that all natural SIV infections are non-pathogenic and suggest that SIVcpz has a substantial negative impact on the health, reproduction and lifespan of chimpanzees in the wild.


PLOS Pathogens | 2008

Molecular ecology and natural history of Simian foamy virus infection in wild-living chimpanzees

Weimin Liu; Michael Worobey; Yingying Li; Brandon F. Keele; Frederic Bibollet-Ruche; Yuanyuan Guo; Paul A. Goepfert; Mario L. Santiago; Jean Bosco N Ndjango; Cecile Neel; Stephen L. Clifford; Crickette M. Sanz; Shadrack Kamenya; Michael L. Wilson; Anne E. Pusey; Nicole Gross-Camp; Christophe Boesch; Vince Smith; Koichiro Zamma; Michael A. Huffman; John C. Mitani; David P. Watts; Martine Peeters; George M. Shaw; William M. Switzer; Paul M. Sharp; Beatrice H. Hahn

Identifying microbial pathogens with zoonotic potential in wild-living primates can be important to human health, as evidenced by human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2) and Ebola virus. Simian foamy viruses (SFVs) are ancient retroviruses that infect Old and New World monkeys and apes. Although not known to cause disease, these viruses are of public health interest because they have the potential to infect humans and thus provide a more general indication of zoonotic exposure risks. Surprisingly, no information exists concerning the prevalence, geographic distribution, and genetic diversity of SFVs in wild-living monkeys and apes. Here, we report the first comprehensive survey of SFVcpz infection in free-ranging chimpanzees (Pan troglodytes) using newly developed, fecal-based assays. Chimpanzee fecal samples (n = 724) were collected at 25 field sites throughout equatorial Africa and tested for SFVcpz-specific antibodies (n = 706) or viral nucleic acids (n = 392). SFVcpz infection was documented at all field sites, with prevalence rates ranging from 44% to 100%. In two habituated communities, adult chimpanzees had significantly higher SFVcpz infection rates than infants and juveniles, indicating predominantly horizontal rather than vertical transmission routes. Some chimpanzees were co-infected with simian immunodeficiency virus (SIVcpz); however, there was no evidence that SFVcpz and SIVcpz were epidemiologically linked. SFVcpz nucleic acids were recovered from 177 fecal samples, all of which contained SFVcpz RNA and not DNA. Phylogenetic analysis of partial gag (616 bp), pol-RT (717 bp), and pol-IN (425 bp) sequences identified a diverse group of viruses, which could be subdivided into four distinct SFVcpz lineages according to their chimpanzee subspecies of origin. Within these lineages, there was evidence of frequent superinfection and viral recombination. One chimpanzee was infected by a foamy virus from a Cercopithecus monkey species, indicating cross-species transmission of SFVs in the wild. These data indicate that SFVcpz (i) is widely distributed among all chimpanzee subspecies; (ii) is shed in fecal samples as viral RNA; (iii) is transmitted predominantly by horizontal routes; (iv) is prone to superinfection and recombination; (v) has co-evolved with its natural host; and (vi) represents a sensitive marker of population structure that may be useful for chimpanzee taxonomy and conservation strategies.


PLOS Pathogens | 2010

Impact of Simian Immunodeficiency Virus Infection on Chimpanzee Population Dynamics

Rebecca S. Rudicell; James Holland Jones; Emily E. Wroblewski; Gerald H. Learn; Yingying Li; Joel D. Robertson; Elizabeth Greengrass; Falk Grossmann; Shadrack Kamenya; Lilian Pintea; Deus Mjungu; Elizabeth V. Lonsdorf; Anna Mosser; Clarence L. Lehman; D. Anthony Collins; Brandon F. Keele; Jane Goodall; Beatrice H. Hahn; Anne E. Pusey; Michael L. Wilson

Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002–2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of −6.5% to −7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002–2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen.


Journal of Virology | 2003

Amplification of a Complete Simian Immunodeficiency Virus Genome from Fecal RNA of a Wild Chimpanzee

Mario L. Santiago; Frederic Bibollet-Ruche; Elizabeth Bailes; Shadrack Kamenya; Martin N. Muller; Magdalena Lukasik; Anne E. Pusey; D. Anthony Collins; Richard W. Wrangham; Jane Goodall; George M. Shaw; Paul M. Sharp; Beatrice H. Hahn

ABSTRACT Current knowledge of the genetic diversity of simian immunodeficiency virus (SIVcpz) infection of wild chimpanzees (Pan troglodytes) is incomplete since few isolates, mostly from captive apes from Cameroon and Gabon, have been characterized; yet this information is critical for understanding the origins of human immunodeficiency virus type 1 (HIV-1) and the circumstances leading to the HIV-1 pandemic. Here, we report the first full-length SIVcpz sequence (TAN1) from a wild chimpanzee (Pan troglodytes schweinfurthii) from Gombe National Park (Tanzania), which was obtained noninvasively by amplification of virion RNA from fecal samples collected under field conditions. Using reverse transcription-PCR and a combination of generic and strain-specific primers, we amplified 13 subgenomic fragments which together spanned the entire TAN1 genome (9,326 bp). Distance and phylogenetic tree analyses identified TAN1 unambiguously as a member of the HIV-1/SIVcpz group of viruses but also revealed an extraordinary degree of divergence from all previously characterized SIVcpz and HIV-1 strains. In Gag, Pol, and Env proteins, TAN1 differed from west-central African SIVcpz and HIV-1 strains on average by 36, 30, and 51% of amino acid sequences, respectively, approaching distance values typically found for SIVs from different primate species. The closest relative was SIVcpzANT, also from a P. t. schweinfurthii ape, which differed by 30, 25, and 44%, respectively, in these same protein sequences but clustered with TAN1 in all major coding regions in a statistically highly significant manner. These data indicate that east African chimpanzees, like those from west-central Africa, are naturally infected by SIVcpz but that their viruses comprise a second, divergent SIVcpz lineage which appears to have evolved in relative isolation for an extended period of time. Our data also demonstrate that noninvasive molecular epidemiological studies of SIVcpz in wild chimpanzees are feasible and that such an approach may prove essential for unraveling the evolutionary history of SIVcpz/HIV-1 as well as that of other pathogens naturally infecting wild primate populations.


Journal of Virology | 2007

Generation of Infectious Molecular Clones of Simian Immunodeficiency Virus from Fecal Consensus Sequences of Wild Chimpanzees

Jun Takehisa; Matthias H. Kraus; Julie M. Decker; Yingying Li; Brandon F. Keele; Frederic Bibollet-Ruche; Kenneth P. Zammit; Zhiping Weng; Mario L. Santiago; Shadrack Kamenya; Michael L. Wilson; Anne E. Pusey; Elizabeth Bailes; Paul M. Sharp; George M. Shaw; Beatrice H. Hahn

ABSTRACT Studies of simian immunodeficiency viruses (SIVs) in their endangered primate hosts are of obvious medical and public health importance, but technically challenging. Although SIV-specific antibodies and nucleic acids have been detected in primate fecal samples, recovery of replication-competent virus from such samples has not been achieved. Here, we report the construction of infectious molecular clones of SIVcpz from fecal viral consensus sequences. Subgenomic fragments comprising a complete provirus were amplified from fecal RNA of three wild-living chimpanzees and sequenced directly. One set of amplicons was concatenated using overlap extension PCR. The resulting clone (TAN1.24) contained intact genes and regulatory regions but was replication defective. It also differed from the fecal consensus sequence by 76 nucleotides. Stepwise elimination of all missense mutations generated several constructs with restored replication potential. The clone that yielded the most infectious virus (TAN1.910) was identical to the consensus sequence in both protein and long terminal repeat sequences. Two additional SIVcpz clones were constructed by direct synthesis of fecal consensus sequences. One of these (TAN3.1) yielded fully infectious virus, while the second one (TAN2.69) required modification at one ambiguous site in the viral pol gene for biological activity. All three reconstructed proviruses produced infectious virions that replicated in human and chimpanzee CD4+ T cells, were CCR5 tropic, and resembled primary human immunodeficiency virus type 1 isolates in their neutralization phenotype. These results provide the first direct evidence that naturally occurring SIVcpz strains already have many of the biological properties required for persistent infection of humans, including CD4 and CCR5 dependence and neutralization resistance. Moreover, they outline a new strategy for obtaining medically important “SIV isolates” that have thus far eluded investigation. Such isolates are needed to identify viral determinants that contribute to cross-species transmission and host adaptation.


Journal of Zoo and Wildlife Medicine | 2011

Pathologic Lesions in Chimpanzees (Pan trogylodytes schweinfurthii) from Gombe National Park, Tanzania, 2004–2010

Karen A. Terio; Michael J. Kinsel; Jane Raphael; Titus Mlengeya; Iddi Lipende; Claire A. Kirchhoff; Baraka Gilagiza; Michael L. Wilson; Shadrack Kamenya; Jacob D. Estes; Brandon F. Keele; Rebecca S. Rudicell; Weimin Liu; Sharon Patton; Anthony Collins; Beatrice H. Hahn; Dominic A. Travis; Elizabeth V. Lonsdorf

Abstract: During a population decline or disease outbreak, the true risk of specific diseases to a wild population is often difficult to determine because of a lack of baseline disease information. To better understand the risk of disease in an endangered and scientifically important population of chimpanzees (Pan trogylodytes schweinfurthii), a health monitoring program was initiated in Gombe National Park, Tanzania. As part of this health monitoring program, comprehensive necropsies with histopathology were conducted on chimpanzees (n = 11; 5 male, 6 female), ranging in age from fetal to 44 yr, that were found dead between August 2004 and January 2010. In contrast to previous reports, respiratory disease was not noted as a cause of morbidity or mortality. Trauma was the most common cause of death in these 11 chimpanzees. All of the chimpanzees greater than 1 yr of age had intestinal and mesenteric parasitic granulomas associated with true strongyles consistent with Oesophagostomum spp. The relative numbers of granulomas increased with age and, in some cases, may have been a cause of weight loss and diarrhea. Simian immunodeficiency virus (SIV)cpz infection was documented in four deceased apes, all of whom exhibited varying amounts of lymphoid depletion including two females with marked CD4+ T cell loss consistent with end-stage SIVmac or human immunodeficiency virus infections. Myocardial megalokaryosis was common in chimpanzees greater than 1 mo of age; yet myocardial interstitial fibrosis, a common lesion in captive chimpanzees, was uncommon and only noted in two aged chimpanzees. These findings provide important information on causes of morbidity and mortality in wild chimpanzees, information that can be used to interpret findings during population declines and lead to better management of this population in the context of disease risk.


PLOS Neglected Tropical Diseases | 2015

Epidemiology and Molecular Characterization of Cryptosporidium spp. in Humans, Wild Primates, and Domesticated Animals in the Greater Gombe Ecosystem, Tanzania

Michele B. Parsons; Dominic A. Travis; Elizabeth V. Lonsdorf; Iddi Lipende; Dawn M. Roellig; Shadrack Kamenya; Hongwei Zhang; Lihua Xiao; Thomas R. Gillespie

Cryptosporidium is an important zoonotic parasite globally. Few studies have examined the ecology and epidemiology of this pathogen in rural tropical systems characterized by high rates of overlap among humans, domesticated animals, and wildlife. We investigated risk factors for Cryptosporidium infection and assessed cross-species transmission potential among people, non-human primates, and domestic animals in the Gombe Ecosystem, Kigoma District, Tanzania. A cross-sectional survey was designed to determine the occurrence and risk factors for Cryptosporidium infection in humans, domestic animals and wildlife living in and around Gombe National Park. Diagnostic PCR revealed Cryptosporidium infection rates of 4.3% in humans, 16.0% in non-human primates, and 9.6% in livestock. Local streams sampled were negative. DNA sequencing uncovered a complex epidemiology for Cryptosporidium in this system, with humans, baboons and a subset of chimpanzees infected with C. hominis subtype IfA12G2; another subset of chimpanzees infected with C. suis; and all positive goats and sheep infected with C. xiaoi. For humans, residence location was associated with increased risk of infection in Mwamgongo village compared to one camp (Kasekela), and there was an increased odds for infection when living in a household with another positive person. Fecal consistency and other gastrointestinal signs did not predict Cryptosporidium infection. Despite a high degree of habitat overlap between village people and livestock, our results suggest that there are distinct Cryptosporidium transmission dynamics for humans and livestock in this system. The dominance of C. hominis subtype IfA12G2 among humans and non-human primates suggest cross-species transmission. Interestingly, a subset of chimpanzees was infected with C. suis. We hypothesize that there is cross-species transmission from bush pigs (Potaochoerus larvatus) to chimpanzees in Gombe forest, since domesticated pigs are regionally absent. Our findings demonstrate a complex nature of Cryptosporidium in sympatric primates, including humans, and stress the need for further studies.


PLOS ONE | 2014

Global Positioning System Data-Loggers: A Tool to Quantify Fine-Scale Movement of Domestic Animals to Evaluate Potential for Zoonotic Transmission to an Endangered Wildlife Population

Michele B. Parsons; Thomas R. Gillespie; Elizabeth V. Lonsdorf; Dominic A. Travis; Iddi Lipende; Baraka Gilagiza; Shadrack Kamenya; Lilian Pintea; Gonzalo M. Vazquez-Prokopec

Domesticated animals are an important source of pathogens to endangered wildlife populations, especially when anthropogenic activities increase their overlap with humans and wildlife. Recent work in Tanzania reports the introduction of Cryptosporidium into wild chimpanzee populations and the increased risk of ape mortality associated with SIVcpz-Cryptosporidium co-infection. Here we describe the application of novel GPS technology to track the mobility of domesticated animals (27 goats, 2 sheep and 8 dogs) with the goal of identifying potential routes for Cryptosporidium introduction into Gombe National Park. Only goats (5/27) and sheep (2/2) were positive for Cryptosporidium. Analysis of GPS tracks indicated that a crop field frequented by both chimpanzees and domesticated animals was a potential hotspot for Cryptosporidium transmission. This study demonstrates the applicability of GPS data-loggers in studies of fine-scale mobility of animals and suggests that domesticated animal–wildlife overlap should be considered beyond protected boundaries for long-term conservation strategies.


American Journal of Primatology | 2015

Population status of chimpanzees in the Masito-Ugalla Ecosystem, Tanzania

Alex K. Piel; Naomi Cohen; Shadrack Kamenya; Sood Ndimuligo; Lilian Pintea; Fiona A. Stewart

More than 75 percent of Tanzanias chimpanzees live at low densities on land outside national parks. Chimpanzees are one of the key conservation targets in the region and long‐term monitoring of these populations is essential for assessing the overall status of ecosystem health and the success of implemented conservation strategies. We aimed to assess change in chimpanzee density within the Masito‐Ugalla Ecosystem (MUE) by comparing results of re‐walking the same line transects in 2007 and 2014. We further used published remote sensing data derived from Landsat satellites to assess forest cover change within a 5 km buffer of these transects over that same period. We detected no statistically significant decline in chimpanzee density across the surveyed areas of MUE between 2007 and 2014, although the overall mean density of chimpanzees declined from 0.09 individuals/km2 in 2007 to 0.05 individuals/km2 in 2014. Whether this change is biologically meaningful cannot be determined due to small sample sizes and large, entirely overlapping error margins. It is therefore possible that the MUE chimpanzee population has been stable over this period and indeed in some areas (Issa Valley, Mkanga, Kamkulu) even showed an increase in chimpanzee density. Variation in chimpanzee habitat preference for ranging or nesting could explain variation in density at some of the survey sites between 2007 and 2014. We also found a relationship between increasing habitat loss and lower mean chimpanzee density. Future surveys will need to ensure a larger sample size, broader geographic effort, and random survey design, to more precisely determine trends in MUE chimpanzee density and population size over time. Am. J. Primatol. 77:1027–1035, 2015.


American Journal of Primatology | 2018

Socioecological correlates of clinical signs in two communities of wild chimpanzees (Pan troglodytes) at Gombe National Park, Tanzania

Elizabeth V. Lonsdorf; Thomas R. Gillespie; Tiffany M. Wolf; Iddi Lipende; Jane Raphael; Jared S. Bakuza; Carson M. Murray; Michael L. Wilson; Shadrack Kamenya; Deus Mjungu; D. Anthony Collins; Ian C. Gilby; Margaret A. Stanton; Karen A. Terio; Hannah J. Barbian; Yingying Li; Miguel Ángel Ramírez; Alexander Krupnick; Emily Seidl; Jane Goodall; Beatrice H. Hahn; Anne E. Pusey; Dominic A. Travis

Disease and other health hazards pose serious threats to the persistence of wild ape populations. The total chimpanzee population at Gombe National Park, Tanzania, has declined from an estimated 120 to 150 individuals in the 1960s to around 100 individuals by the end of 2013, with death associated with observable signs of disease as the leading cause of mortality. In 2004, we began a non‐invasive health‐monitoring program in the two habituated communities in the park (Kasekela and Mitumba) with the aim of understanding the prevalence of health issues in the population, and identifying the presence and impacts of various pathogens. Here we present prospectively collected data on clinical signs (observable changes in health) in the chimpanzees of the Kasekela (n = 81) and Mitumba (n = 32) communities over an 8‐year period (2005–2012). First, we take a population approach and analyze prevalence of clinical signs in five different categories: gastrointestinal system (diarrhea), body condition (estimated weight loss), respiratory system (coughing, sneezing etc.), wounds/lameness, and dermatologic issues by year, month, and community membership. Mean monthly prevalence of each clinical sign per community varied, but typically affected <10% of observed individuals. Secondly, we analyze the presence of clinical signs in these categories as they relate to individual demographic and social factors (age, sex, and dominance rank) and simian immunodeficiency virus (SIVcpz) infection status. Adults have higher odds of being observed with diarrhea, loss of body condition, and wounds or lameness when compared to immatures, while males have a higher probability of being observed with wounds or lameness than females. In contrast, signs of respiratory illness appear not to be related to chimpanzee‐specific factors and skin abnormalities are very rare. For a subset of known‐rank individuals, dominance rank predicts the probability of wounding/lameness in adult males, but does not predict any adverse clinical signs in adult females. Instead, adult females with SIVcpz infection are more likely to be observed with diarrhea, a finding that warrants further investigation. Comparable data are needed from other sites to determine whether the prevalence of clinical signs we observe are relatively high or low, as well as to more fully understand the factors influencing health of wild apes at both the population and individual level. Am. J. Primatol. 80:e22562, 2018.

Collaboration


Dive into the Shadrack Kamenya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice H. Hahn

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George M. Shaw

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederic Bibollet-Ruche

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Mario L. Santiago

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge