Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Devarajan Sridharan is active.

Publication


Featured researches published by Devarajan Sridharan.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks

Devarajan Sridharan; Daniel J. Levitin; Vinod Menon

Cognitively demanding tasks that evoke activation in the brains central-executive network (CEN) have been consistently shown to evoke decreased activation (deactivation) in the default-mode network (DMN). The neural mechanisms underlying this switch between activation and deactivation of large-scale brain networks remain completely unknown. Here, we use functional magnetic resonance imaging (fMRI) to investigate the mechanisms underlying switching of brain networks in three different experiments. We first examined this switching process in an auditory event segmentation task. We observed significant activation of the CEN and deactivation of the DMN, along with activation of a third network comprising the right fronto-insular cortex (rFIC) and anterior cingulate cortex (ACC), when participants perceived salient auditory event boundaries. Using chronometric techniques and Granger causality analysis, we show that the rFIC-ACC network, and the rFIC, in particular, plays a critical and causal role in switching between the CEN and the DMN. We replicated this causal connectivity pattern in two additional experiments: (i) a visual attention “oddball” task and (ii) a task-free resting state. These results indicate that the rFIC is likely to play a major role in switching between distinct brain networks across task paradigms and stimulus modalities. Our findings have important implications for a unified view of network mechanisms underlying both exogenous and endogenous cognitive control.


Neuron | 2007

Neural Dynamics of Event Segmentation in Music: Converging Evidence for Dissociable Ventral and Dorsal Networks

Devarajan Sridharan; Daniel J. Levitin; Chris Chafe; Jonathan Berger; Vinod Menon

The real world presents our sensory systems with a continuous stream of undifferentiated information. Segmentation of this stream at event boundaries is necessary for object identification and feature extraction. Here, we investigate the neural dynamics of event segmentation in entire musical symphonies under natural listening conditions. We isolated time-dependent sequences of brain responses in a 10 s window surrounding transitions between movements of symphonic works. A strikingly right-lateralized network of brain regions showed peak response during the movement transitions when, paradoxically, there was no physical stimulus. Model-dependent and model-free analysis techniques provided converging evidence for activity in two distinct functional networks at the movement transition: a ventral fronto-temporal network associated with detecting salient events, followed in time by a dorsal fronto-parietal network associated with maintaining attention and updating working memory. Our study provides direct experimental evidence for dissociable and causally linked ventral and dorsal networks during event segmentation of ecologically valid auditory stimuli.


International Journal of Neural Systems | 2006

The role of the basal ganglia in exploration in a neural model based on reinforcement learning.

Devarajan Sridharan; P. S. Prashanth; V. S. Chakravarthy

We present a computational model of basal ganglia as a key player in exploratory behavior. The model describes exploration of a virtual rat in a simulated water pool experiment. The virtual rat is trained using a reward-based or reinforcement learning paradigm which requires units with stochastic behavior for exploration of the systems state space. We model the Subthalamic Nucleus-Globus Pallidus externa (STN-GPe) segment of the basal ganglia as a pair of neuronal layers with oscillatory dynamics, exhibiting a variety of dynamic regimes such as chaos, traveling waves and clustering. Invoking the property of chaotic systems to explore state-space, we suggest that the complex exploratory dynamics of STN-GPe system in conjunction with dopamine-based reward signaling from the Substantia Nigra pars compacta (SNc) present the two key ingredients of a reinforcement learning system.


Neuron | 2012

Gamma Oscillations Are Generated Locally in an Attention-Related Midbrain Network

C. Alex Goddard; Devarajan Sridharan; John R. Huguenard; Eric I. Knudsen

Gamma-band (25-140 Hz) oscillations are a hallmark of sensory processing in the forebrain. The optic tectum (OT), a midbrain structure implicated in sensorimotor processing and attention, also exhibits gamma oscillations. However, the origin and mechanisms of these oscillations remain unknown. We discovered that in acute slices of the avian OT, persistent (>100 ms) epochs of large amplitude gamma oscillations can be evoked that closely resemble those recorded in vivo. We found that cholinergic, glutamatergic, and GABAergic mechanisms differentially regulate the structure of the oscillations at various timescales. These persistent oscillations originate in the multisensory layers of the OT and are broadcast to visual layers via the cholinergic nucleus Ipc, providing a potential mechanism for enhancing the processing of visual information within the OT. The finding that the midbrain contains an intrinsic gamma-generating circuit suggests that the OT could use its own oscillatory code to route signals to forebrain networks.


Journal of Neurophysiology | 2011

Space coding by gamma oscillations in the barn owl optic tectum.

Devarajan Sridharan; Kwabena Boahen; Eric I. Knudsen

Gamma-band (25-140 Hz) oscillations of the local field potential (LFP) are evoked by sensory stimuli in the mammalian forebrain and may be strongly modulated in amplitude when animals attend to these stimuli. The optic tectum (OT) is a midbrain structure known to contribute to multimodal sensory processing, gaze control, and attention. We found that presentation of spatially localized stimuli, either visual or auditory, evoked robust gamma oscillations with distinctive properties in the superficial (visual) layers and in the deep (multimodal) layers of the owls OT. Across layers, gamma power was tuned sharply for stimulus location and represented space topographically. In the superficial layers, induced LFP power peaked strongly in the low-gamma band (25-90 Hz) and increased gradually with visual contrast across a wide range of contrasts. Spikes recorded in these layers included presumptive axonal (input) spikes that encoded stimulus properties nearly identically with gamma oscillations and were tightly phase locked with the oscillations, suggesting that they contribute to the LFP oscillations. In the deep layers, induced LFP power was distributed across the low and high (90-140 Hz) gamma-bands and tended to reach its maximum value at relatively low visual contrasts. In these layers, gamma power was more sharply tuned for stimulus location, on average, than were somatic spike rates, and somatic spikes synchronized with gamma oscillations. Such gamma synchronized discharges of deep-layer neurons could provide a high-resolution temporal code for signaling the location of salient sensory stimuli.


Current Opinion in Neurobiology | 2015

Gamma oscillations in the midbrain spatial attention network: linking circuits to function

Devarajan Sridharan; Eric I. Knudsen

Gamma-band (25-140Hz) oscillations are ubiquitous in mammalian forebrain structures involved in sensory processing, attention, learning and memory. The optic tectum (OT) is the central structure in a midbrain network that participates critically in controlling spatial attention. In this review, we summarize recent advances in characterizing a neural circuit in this midbrain network that generates large amplitude, space-specific, gamma oscillations in the avian OT, both in vivo and in vitro. We describe key physiological and pharmacological mechanisms that produce and regulate the structure of these oscillations. The extensive similarities between midbrain gamma oscillations in birds and those in the neocortex and hippocampus of mammals, offer important insights into the functional significance of a midbrain gamma oscillatory code.


Frontiers in Systems Neuroscience | 2013

Magnetic tracking of eye position in freely behaving chickens

Jason S. Schwarz; Devarajan Sridharan; Eric I. Knudsen

Research on the visual system of non-primates, such as birds and rodents, is increasing. Evidence that neural responses can differ dramatically between head-immobilized and freely behaving animals underlines the importance of studying visual processing in ethologically relevant contexts. In order to systematically study visual responses in freely behaving animals, an unobtrusive system for monitoring eye-in-orbit position in real time is essential. We describe a novel system for monitoring eye position that utilizes a head-mounted magnetic displacement sensor coupled with an eye-implanted magnet. This system is small, lightweight, and offers high temporal and spatial resolution in real time. We use the system to demonstrate the stability of the eye and the stereotypy of eye position during two different behavioral tasks in chickens. This approach offers a viable alternative to search coil and optical eye tracking techniques for high resolution tracking of eye-in-orbit position in behaving animals.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Visuospatial selective attention in chickens

Devarajan Sridharan; Deepa L. Ramamurthy; Jason S. Schwarz; Eric I. Knudsen

Significance Top-down selective attention, which is fundamental to cognition, has been studied extensively in humans and nonhuman primates. Here we report the behavioral hallmarks of selective attention in a nonprimate species, the domestic chicken. When provided with a spatial cue, birds exhibited dramatic improvements in accuracy, faster reaction times, and higher choice certainty in a target localization task. Our results reveal that chickens shift spatial attention rapidly and dynamically following principles remarkably similar to those documented in primates. Given the evolutionary distance (>250 million years) and enormous ethological differences between chickens and primates, our findings suggest that neural mechanisms mediating selective attention appeared early in vertebrate evolution and that they are conserved across phylogeny. Voluntary control of attention promotes intelligent, adaptive behaviors by enabling the selective processing of information that is most relevant for making decisions. Despite extensive research on attention in primates, the capacity for selective attention in nonprimate species has never been quantified. Here we demonstrate selective attention in chickens by applying protocols that have been used to characterize visual spatial attention in primates. Chickens were trained to localize and report the vertical position of a target in the presence of task-relevant distracters. A spatial cue, the location of which varied across individual trials, indicated the horizontal, but not vertical, position of the upcoming target. Spatial cueing improved localization performance: accuracy (d′) increased and reaction times decreased in a space-specific manner. Distracters severely impaired perceptual performance, and this impairment was greatly reduced by spatial cueing. Signal detection analysis with an “indecision” model demonstrated that spatial cueing significantly increased choice certainty in localizing targets. By contrast, error-aversion certainty (certainty of not making an error) remained essentially constant across cueing protocols, target contrasts, and individuals. The results show that chickens shift spatial attention rapidly and dynamically, following principles of stimulus selection that closely parallel those documented in primates. The findings suggest that the mechanisms that control attention have been conserved through evolution, and establish chickens—a highly visual species that is easily trained and amenable to cutting-edge experimental technologies—as an attractive model for linking behavior to neural mechanisms of selective attention.


The Journal of Neuroscience | 2017

Does the Superior Colliculus Control Perceptual Sensitivity or Choice Bias during Attention? Evidence from a Multialternative Decision Framework

Devarajan Sridharan; Nicholas A. Steinmetz; Tirin Moore; Eric I. Knudsen

Distinct networks in the forebrain and the midbrain coordinate to control spatial attention. The critical involvement of the superior colliculus (SC)—the central structure in the midbrain network—in visuospatial attention has been shown by four seminal, published studies in monkeys (Macaca mulatta) performing multialternative tasks. However, due to the lack of a mechanistic framework for interpreting behavioral data in such tasks, the nature of the SCs contribution to attention remains unclear. Here we present and validate a novel decision framework for analyzing behavioral data in multialternative attention tasks. We apply this framework to re-examine the behavioral evidence from these published studies. Our model is a multidimensional extension to signal detection theory that distinguishes between two major classes of attentional mechanisms: those that alter the quality of sensory information or “sensitivity,” and those that alter the selective gating of sensory information or “choice bias.” Model-based simulations and model-based analyses of data from these published studies revealed a converging pattern of results that indicated that choice-bias changes, rather than sensitivity changes, were the primary outcome of SC manipulation. Our results suggest that the SC contributes to attentional performance predominantly by generating a spatial choice bias for stimuli at a selected location, and that this bias operates downstream of forebrain mechanisms that enhance sensitivity. The findings lead to a testable mechanistic framework of how the midbrain and forebrain networks interact to control spatial attention. SIGNIFICANCE STATEMENT Attention involves the selection of the most relevant information for differential sensory processing and decision making. While the mechanisms by which attention alters sensory encoding (sensitivity control) are well studied, the mechanisms by which attention alters decisional weighting of sensory evidence (choice-bias control) are poorly understood. Here, we introduce a model of multialternative decision making that distinguishes bias from sensitivity effects in attention tasks. With our model, we simulate experimental data from four seminal studies that microstimulated or inactivated a key attention-related midbrain structure, the superior colliculus (SC). We demonstrate that the experimental effects of SC manipulation are entirely consistent with the SC controlling attention by changing choice bias, thereby shedding new light on how the brain mediates attention.


PLOS ONE | 2013

Spatial Probability Dynamically Modulates Visual Target Detection in Chickens

Devarajan Sridharan; Deepa L. Ramamurthy; Eric I. Knudsen

The natural world contains a rich and ever-changing landscape of sensory information. To survive, an organism must be able to flexibly and rapidly locate the most relevant sources of information at any time. Humans and non-human primates exploit regularities in the spatial distribution of relevant stimuli (targets) to improve detection at locations of high target probability. Is the ability to flexibly modify behavior based on visual experience unique to primates? Chickens (Gallus domesticus) were trained on a multiple alternative Go/NoGo task to detect a small, briefly-flashed dot (target) in each of the quadrants of the visual field. When targets were presented with equal probability (25%) in each quadrant, chickens exhibited a distinct advantage for detecting targets at lower, relative to upper, hemifield locations. Increasing the probability of presentation in the upper hemifield locations (to 80%) dramatically improved detection performance at these locations to be on par with lower hemifield performance. Finally, detection performance in the upper hemifield changed on a rapid timescale, improving with successive target detections, and declining with successive detections at the diagonally opposite location in the lower hemifield. These data indicate the action of a process that in chickens, as in primates, flexibly and dynamically modulates detection performance based on the spatial probabilities of sensory stimuli as well as on recent performance history.

Collaboration


Dive into the Devarajan Sridharan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shrey Grover

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjna Banerjee

Indian Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge