Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Devendra Kumar Patel is active.

Publication


Featured researches published by Devendra Kumar Patel.


Toxicology and Applied Pharmacology | 2008

Correlation of phthalate exposures with semen quality

Niraj Pant; Manju Shukla; Devendra Kumar Patel; Yogeshwar Shukla; Neeraj Mathur; Yogendra Kumar Gupta; D. K. Saxena

Phthalates are widely used man-made chemical released in the environment and human exposure is mainly through diet. As the phthalate plasticizers are not covalently bound to PVC, they can leach, migrate or evaporate into the environment and as a result have become ubiquitously contaminants. The present study investigates the correlation, if any, between the phthalate esters (DEP, DEHP, DBP, DMP, DOP) and sperm mitochondrial status, ROS, LPO, SCSA, and sperm quality. The study was conducted in the urban/rural population of Lucknow visiting Obstetrics and Gynecology Department, CSMMU, Lucknow. Semen analysis was performed according to the WHO guidelines while phthalate analysis by HPLC and LPO by spectrophotometer and the sperm mitochondrial status, ROS, SCSA using flow cytometry. The questionnaire data showed no significant difference in the demographic characteristics among the groups. In general, urban population was found to have statistically significant higher levels of phthalate esters than the rural. Further, infertile men showed statistically significant (p<0.05) higher levels of pollutants in the semen than fertile men. A negative correlation between semen phthalate level viz DEHP and sperm quality and positive association with depolarized mitochondria, elevation in ROS production and LPO, DNA fragmentation was established. The findings are suggestive that phthalates might be one among the contributing factors associated with the deterioration in semen quality and these adverse effects might be ROS, LPO and mitochondrial dysfunction mediated.


ACS Nano | 2014

Curcumin-Loaded Nanoparticles Potently Induce Adult Neurogenesis and Reverse Cognitive Deficits in Alzheimer’s Disease Model via Canonical Wnt/β-Catenin Pathway

Shashi Kant Tiwari; Swati Agarwal; Brashket Seth; Anuradha Yadav; Saumya Nair; Priyanka Bhatnagar; Madhumita Karmakar; Manisha Kumari; L.K.S. Chauhan; Devendra Kumar Patel; Vikas Srivastava; Dhirendra Singh; Shailendra K. Gupta; Anurag Tripathi; Rajnish Kumar Chaturvedi; Kailash C. Gupta

Neurogenesis, a process of generation of new neurons, is reported to be reduced in several neurodegenerative disorders including Alzheimers disease (AD). Induction of neurogenesis by targeting endogenous neural stem cells (NSC) could be a promising therapeutic approach to such diseases by influencing the brain self-regenerative capacity. Curcumin, a neuroprotective agent, has poor brain bioavailability. Herein, we report that curcumin-encapsulated PLGA nanoparticles (Cur-PLGA-NPs) potently induce NSC proliferation and neuronal differentiation in vitro and in the hippocampus and subventricular zone of adult rats, as compared to uncoated bulk curcumin. Cur-PLGA-NPs induce neurogenesis by internalization into the hippocampal NSC. Cur-PLGA-NPs significantly increase expression of genes involved in cell proliferation (reelin, nestin, and Pax6) and neuronal differentiation (neurogenin, neuroD1, neuregulin, neuroligin, and Stat3). Curcumin nanoparticles increase neuronal differentiation by activating the Wnt/β-catenin pathway, involved in regulation of neurogenesis. These nanoparticles caused enhanced nuclear translocation of β-catenin, decreased GSK-3β levels, and increased promoter activity of the TCF/LEF and cyclin-D1. Pharmacological and siRNA-mediated genetic inhibition of the Wnt pathway blocked neurogenesis-stimulating effects of curcumin. These nanoparticles reverse learning and memory impairments in an amyloid beta induced rat model of AD-like phenotypes, by inducing neurogenesis. In silico molecular docking studies suggest that curcumin interacts with Wif-1, Dkk, and GSK-3β. These results suggest that curcumin nanoparticles induce adult neurogenesis through activation of the canonical Wnt/β-catenin pathway and may offer a therapeutic approach to treating neurodegenerative diseases such as AD, by enhancing a brain self-repair mechanism.


Journal of Pineal Research | 2010

Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson's disease phenotype in the mouse.

Naveen Kumar Singhal; Garima Srivastava; Devendra Kumar Patel; Swatantra Kumar Jain; Mahendra Singh

Abstract:  Oxidative stress is reported as one of the most widely accepted mechanisms of maneb (MB)‐ and paraquat (PQ)‐induced nigrostriatal dopaminergic neurodegeneration leading to the Parkinson’s disease (PD) phenotype. The study investigated the effects of silymarin, an antioxidant of plant origin, and melatonin, an indoleamine produced in all species, in MB‐ and PQ‐induced mouse model of PD. The mice were treated intraperitoneally daily with silymarin (40 mg/kg) or melatonin (30 mg/kg) along with respective controls for 9 wk. Subsets of these animals were also treated with MB (30 mg/kg) and PQ (10 mg/kg), twice a week, for 9 wk, 2 hr after silymarin/melatonin treatment. Locomotor activities along with striatal dopamine content, tyrosine hydroxylase (TH) immunoreactivity, number of degenerating neurons, lipid peroxidation and nitrite content were estimated. Additionally, mRNA expression of vesicular monoamine transporter, cytochrome P‐450 2E1 (CYP2E1), and glutathione‐S‐transferase A4‐4 (GSTA4‐4), catalytic activities of CYP2E1 and GSTA4‐4 and protein expressions of unphosphorylated and phosphorylated p53 (p53 and P‐p53), Bax and caspase 9 were measured in control and MB‐ and PQ‐treated mice with either silymarin or melatonin treatments. Silymarin/melatonin significantly offset MB‐ and PQ‐mediated reductions in locomotor activities, dopamine content, TH immunoreactivity, VMAT 2 mRNA expression and the expression of p53 protein. Silymarin/melatonin attenuated the increases in lipid peroxidation, number of degenerating neurons, nitrite content, mRNA expressions of cytochrome P‐450 2E1 (CYP2E1) and GSTA4‐4, catalytic activities of CYP2E1 and GST and P‐p53, Bax and caspase 9 protein expressions. The results demonstrate that silymarin and melatonin offer nigrostriatal dopaminergic neuroprotection against MB‐ and PQ‐induced PD by the modulation of oxidative stress and apoptotic machinery.


Environmental Science and Pollution Research | 2014

Reproductive toxicity of lead, cadmium, and phthalate exposure in men.

Niraj Pant; G. Kumar; A. D. Upadhyay; Devendra Kumar Patel; Yogendra Kumar Gupta; P. K. Chaturvedi

Environmental toxicants viz lead or cadmium and phthalate esters (di(2-ethylhexyl) phthalate [DEHP], dibutyl phthalate [DBP], and diethyl phthalate [DEP]) widely found in different environmental strata are linked to deteriorating male reproductive health. The objective was to assess the relationships between the seminal lead, cadmium, and phthalate (DEHP, DBP, DEP) concentrations at environmental level and serum hormone levels and semen quality in non-occupationally exposed men and specify the effect of individual and combined exposure of toxicants on semen quality. A study of 60 male partners of couples attending the Andrology Laboratory of the Reproductive Biology Department, All India Institute of Medical Sciences (AIIMS), New Delhi, India for semen analysis to assess their inability to achieve a pregnancy was selected for the study. The results of univariate and stepwise multiple regression analysis in the unadjusted model showed a significant correlation between lead or cadmium and phthalates DEHP/DBP/DEP and sperm motility, sperm concentration, and DNA damage. After adjusting for potential confounders, an association with lead or DEHP was only observed. The present data shows that lead (Pb) or cadmium (Cd) or phthalates might independently contribute to decline in semen quality and induce DNA damage. Phthalates might influence reproductive hormone testosterone. These findings are significant in light of the fact that men are exposed to a volley of chemicals; however, due to the small sample size, our finding needs to be confirmed in a larger population.


Neurotoxicology | 2010

Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats

Rajesh S. Yadav; Rajendra K. Shukla; Madhu Lata Sankhwar; Devendra Kumar Patel; Reyaz W. Ansari; Aditya B. Pant; Falchrul Islam; Vinay K. Khanna

Our recent studies have shown that arsenic-induced neurobehavioral toxicity is protected by curcumin by modulating oxidative stress and dopaminergic functions in rats. In addition, the neuroprotective effect of curcumin has been investigated on arsenic-induced alterations in biogenic amines, their metabolites and nitric oxide (NO), which play an important role in neurotransmission process. Decrease in the levels of dopamine (DA, 28%), norepinephrine (NE, 54%), epinephrine (EPN, 46%), serotonin (5-HT, 44%), 3,4-dihydroxyphenylacetic acid (DOPAC, 20%) and homovanillic acid (HVA, 31%) in corpus striatum; DA (51%), NE (22%), EPN (47%), 5-HT (25%), DOPAC (34%) and HVA (41%) in frontal cortex and DA (35%), NE (35%), EPN (29%), 5-HT (54%), DOPAC (37%) and HVA (46%) in hippocampus, observed in arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) treated rats exhibited a trend of recovery in rats simultaneously treated with arsenic and curcumin (100 mg/kg body weight, p.o., 28 days). Increased levels of NO in corpus striatum (2.4-fold), frontal cortex (6.1-fold) and hippocampus (6.2-fold) in arsenic-treated rats were found decreased in rats simultaneously treated with arsenic and curcumin. It is evident that curcumin modulates levels of brain biogenic amines and NO in arsenic-exposed rats and these results further strengthen its neuroprotective efficacy.


ACS Nano | 2015

Trans-Blood Brain Barrier Delivery of Dopamine-Loaded Nanoparticles Reverses Functional Deficits in Parkinsonian Rats

Richa Pahuja; Kavita Seth; Anshi Shukla; Rajendra K. Shukla; Priyanka Bhatnagar; L.K.S. Chauhan; Prem Narain Saxena; Jharna Arun; Bhushan P. Chaudhari; Devendra Kumar Patel; Sheelendra Pratap Singh; Rakesh Shukla; Vinay K. Khanna; Pradeep Kumar; Rajnish Kumar Chaturvedi; Kailash C. Gupta

Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinsons disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.


Brain Research | 2012

Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: similarity with paraquat neurotoxicity.

Ashutosh Kumar; Brajesh Kumar Singh; Israr Ahmad; Smriti Shukla; Devendra Kumar Patel; Garima Srivastava; Vinod Kumar; Haushila Prasad Pandey; Chetna Singh

An association between excessive zinc (Zn) accumulation in brain and incidences of Parkinsons disease (PD) has been shown in several epidemiological and experimental investigations. The involvement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and glutathione (GSH) in the pathogenesis of PD has also been proposed in a few studies. Despite the implicated role of oxidative stress in PD, the entire mechanism of Zn-induced dopaminergic neurodegeneration has not yet been clearly understood. The present study aimed to investigate the involvement of NADPH oxidase and GSH in Zn-induced dopaminergic neurodegeneration and also to assess its similarity with paraquat (PQ)-induced rat model of PD. Male Wistar rats were treated either with Zn (20 mg/kg; i.p.) or PQ (5 mg/kg; i.p.) in the presence and absence of NADPH oxidase inhibitor, apocynin (10 mg/kg; i.p.) and a GSH precursor, N-acetyl cysteine (NAC; 200 mg/kg; i.p.) either alone or in combination along with the respective controls. Apocynin and/or NAC pre-treatment significantly alleviated Zn- and PQ-induced changes in neurobehavioral deficits, number of dopaminergic neurons and contents of the striatal dopamine and its metabolites. Apocynin and/or NAC also mitigated Zn- and PQ-induced alterations in oxidative stress, NADPH oxidase activation and cytochrome c release, caspases-9 and -3 activation and CD11b expression. The results obtained thus suggest that Zn induces oxidative stress via the activation of NADPH oxidase and depletion of GSH, which in turn activate the apoptotic machinery leading to dopaminergic neurodegeneration similar to PQ.


Free Radical Research | 2010

Effect of zinc and paraquat co-exposure on neurodegeneration: Modulation of oxidative stress and expression of metallothioneins, toxicant responsive and transporter genes in rats

Ashutosh Kumar; Israr Ahmad; Smriti Shukla; Brajesh K. Singh; Devendra Kumar Patel; Haushila Prasad Pandey; Chetna Singh

Abstract Oxidative stress is implicated in Parkinsons disease (PD). Metallothioneins (MT), cytochrome P450 IIE1 (CYP2E1) and glutathione S-transferases alpha4-4 (GSTA4-4) are involved in oxidative stress-mediated damage. Altered dopamine transporter (DAT) and vesicular monoamine transporter-2 (VMAT-2) are also documented in PD. The present study was undertaken to investigate the effect of Zn and PQ co-exposure on neurodegeneration in rats. A significant reduction was observed in spontaneous locomotor activity (SLA), striatal dopamine (DA) levels, tyrosine hydroxylase (TH) immunoreactivity, glutathione reductase (GR) and catalase activity along with increased lipid peroxidation (LPO) and glutathione peroxidase (GPx) activity after Zn and/or PQ exposure. Zn and/or PQ exposure increased gene expression of DAT, CYP2E1, GSTA4-4, MT-I and MT-II, but reduced the expression of VMAT-2. Protein expression analysis of TH, VMAT-2 and DAT showed results similar to those obtained with gene expression study. Zn and PQ co-exposure caused a more pronounced effect than that of individual exposure. The results obtained in this study suggest that, similar to PQ, Zn induced neurodegeneration via alterations in oxidative stress and expression of the above-mentioned genes. However, the effect of Zn+PQ was only slightly higher than that of alone, indicating that probably Zn and PQ follow some different molecular events leading to neurodegeneration.


Free Radical Biology and Medicine | 2012

Resveratrol potentiates cytochrome P450 2 d22-mediated neuroprotection in maneb- and paraquat-induced parkinsonism in the mouse

Garima Srivastava; Anubhuti Dixit; Sharawan Yadav; Devendra Kumar Patel; Om Prakash; Mahendra Singh

A strong association between polymorphisms of the cytochrome P450 (CYP/Cyp) 2D6 gene and risk to Parkinsons disease (PD) is well established. The present study investigated the neuroprotective potential of Cyp2d22, a mouse ortholog of human CYP2D6, in maneb- and paraquat-induced parkinsonism and the mechanisms involved therein along with the effects of resveratrol on various parameters associated with Cyp2d22-mediated neuroprotection. The animals were treated intraperitoneally with resveratrol (10mg/kg, daily) and paraquat (10mg/kg) alone or in combination with maneb (30 mg/kg), twice a week, for 9 weeks, along with their respective controls. The subsets of animals were also treated intraperitoneally with a Cyp2d22 inhibitor, ketoconazole (100mg/kg, daily). Maneb and paraquat reduced Cyp2d22 and vesicular monoamine transporter type 2 (VMAT-2) expressions, the number of tyrosine hydroxylase-positive cells, and dopamine content and increased paraquat accumulation in the nigrostriatal tissues, oxidative stress, microglial activation, neuroinflammation, and apoptosis. Cyp2d22 inhibitor significantly exacerbated all these neurodegenerative indexes. Resveratrol cotreatment, partially but significantly, ameliorated the neurodegenerative changes by altering Cyp2d22 expression and paraquat accumulation. The results obtained in the study demonstrate that Cyp2d22 offers neuroprotection in maneb- and paraquat-induced dopaminergic neurodegeneration and resveratrol enhances its neuroprotective credentials by influencing Cyp2d22 expression and paraquat accumulation.


Toxicological Sciences | 2011

Nigrostriatal proteomics of cypermethrin-induced dopaminergic neurodegeneration: Microglial activation dependent and independent regulations

Anand Kumar Singh; Manindra Nath Tiwari; Anubhuti Dixit; Ghanshyam Upadhyay; Devendra Kumar Patel; Dhirendra Singh; Om Prakash; Mahendra Singh

The study aimed to identify the differentially expressed nigrostriatal proteins in cypermethrin-induced neurodegeneration and to investigate the role of microglial activation therein. Proteomic approaches were used to identify the differentially expressed proteins. Microglial activation, tyrosine hydroxylase immunoreactivity (TH-IR), dopamine content, and neurobehavioral changes were measured according to the standard procedures. The expressions of α-internexin intermediate filament (α-IIF), ATP synthase D chain (ATP-SD), heat shock protein (Hsp)-70, truncated connexin-47, Hsp-60, mitogen-activated protein kinase-activated kinase-5, nicotinamide adenine dinucleotide dehydrogenase 24k chain precursor, platelet-activating factor acetyl hydrolase 1b-α2 (PAF-AH 1b-α2), and synaptosomal-associated protein-25 (SNAP-25) were altered in the substantia nigra and nicotinamide adenine dinucleotide- specific isocitrate dehydrogenase, phosphatidylethanolamine-binding protein-1, prohibitin, protein disulfide isomerase-endoplasmic reticulum 60 protease, stathmin, and ubiquitin-conjugating enzyme in the striatum along with motor impairment, decreased dopamine and TH-IR, and increased microglial activation after cypermethrin exposure. Minocycline restored α-IIF, ATP-SD chain, truncated connexin-47, Hsp-60, PAF-AH 1b-α2, stathmin and SNAP-25 expressions, motor impairment, dopamine, TH-IR, and microglial activation. The results suggest that cypermethrin produces microglial activation-dependent and -independent changes in the expression patterns of the nigrostriatal proteins leading to dopaminergic neurodegeneration.

Collaboration


Dive into the Devendra Kumar Patel's collaboration.

Top Co-Authors

Avatar

Mahendra Singh

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

Chetna Singh

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

Ankita Asati

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

D. K. Upreti

National Botanical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rupender Kumari

Central Forensic Science Laboratory

View shared research outputs
Top Co-Authors

Avatar

Vinod Kumar

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Israr Ahmad

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

M.K.J. Siddiqui

Indian Institute of Toxicology Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge