Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Devin L. Stauff is active.

Publication


Featured researches published by Devin L. Stauff.


PLOS Pathogens | 2006

Staphylococcus aureus Redirects Central Metabolism to Increase Iron Availability

David B. Friedman; Devin L. Stauff; Gleb Pishchany; Corbin W. Whitwell; Victor J. Torres; Eric P. Skaar

Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment) or genetic (Δfur) alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB), a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain

Kelly A. Gangwer; Darren J. Mushrush; Devin L. Stauff; Ben Spiller; Mark S. McClain; Timothy L. Cover; D. Borden Lacy

Helicobacter pylori VacA, a pore-forming toxin secreted by an autotransporter pathway, causes multiple alterations in human cells, contributes to the pathogenesis of peptic ulcer disease and gastric cancer, and is a candidate antigen for inclusion in an H. pylori vaccine. Here, we present a 2.4-Å crystal structure of the VacA p55 domain, which has an important role in mediating VacA binding to host cells. The structure is predominantly a right-handed parallel β-helix, a feature that is characteristic of autotransporter passenger domains but unique among known bacterial protein toxins. Notable features of VacA p55 include disruptions in β-sheet contacts that result in five β-helix subdomains and a C-terminal domain that contains a disulfide bond. Analysis of VacA protein sequences from unrelated H. pylori strains, including m1 and m2 forms of VacA, allows us to identify structural features of the VacA surface that may be important for interactions with host receptors. Docking of the p55 structure into a 19-Å cryo-EM map of a VacA dodecamer allows us to propose a model for how VacA monomers assemble into oligomeric structures capable of membrane channel formation.


Infection and Immunity | 2010

Staphylococcus aureus Fur Regulates the Expression of Virulence Factors That Contribute to the Pathogenesis of Pneumonia

Victor J. Torres; Ahmed S. Attia; William J. Mason; M. Indriati Hood; Brian D. Corbin; Federico C. Beasley; Kelsi L. Anderson; Devin L. Stauff; W. Hayes McDonald; Lisa J. Zimmerman; David B. Friedman; David E. Heinrichs; Paul M. Dunman; Eric P. Skaar

ABSTRACT The tremendous success of Staphylococcus aureus as a pathogen is due to the controlled expression of a diverse array of virulence factors. The effects of host environments on the expression of virulence factors and the mechanisms by which S. aureus adapts to colonize distinct host tissues are largely unknown. Vertebrates have evolved to sequester nutrient iron from invading bacteria, and iron availability is a signal that alerts pathogenic microorganisms when they enter the hostile host environment. Consistent with this, we report here that S. aureus senses alterations in the iron status via the ferric uptake regulator (Fur) and alters the abundance of a large number of virulence factors. These Fur-mediated changes protect S. aureus against killing by neutrophils, and Fur is required for full staphylococcal virulence in a murine model of infection. A potential mechanistic explanation for the impact of Fur on virulence is provided by the observation that Fur coordinates the reciprocal expression of cytolysins and a subset of immunomodulatory proteins. More specifically, S. aureus lacking fur exhibits decreased expression of immunomodulatory proteins and increased expression of cytolysins. These findings reveal that Fur is involved in initiating a regulatory program that organizes the expression of virulence factors during the pathogenesis of S. aureus pneumonia.


Journal of Biological Chemistry | 2007

Signaling and DNA-binding Activities of the Staphylococcus aureus HssR-HssS Two-component System Required for Heme Sensing

Devin L. Stauff; Victor J. Torres; Eric P. Skaar

For the important human pathogen Staphylococcus aureus, host heme is a vital source of nutrient iron during infection. Paradoxically, heme is also toxic at high concentrations and is capable of killing S. aureus. To maintain cellular heme homeostasis, S. aureus employs the coordinated actions of the heme sensing two-component system (HssRS) and the heme regulated transporter efflux pump (HrtAB). HssRS-dependent expression of HrtAB results in the alleviation of heme toxicity and tempered staphylococcal virulence. Although genetic experiments have defined the role of HssRS in the heme-dependent activation of hrtAB, the mechanism of this activation is not known. Furthermore, the global effect of HssRS on S. aureus gene expression has not been evaluated. Herein, we combine multivariable difference gel electrophoresis with mass spectrometry to identify the heme-induced cytoplasmic HssRS regulon. These experiments establish hrtAB as the major target of activation by HssRS in S. aureus. In addition, we show that signaling between the sensor histidine kinase HssS and the response regulator HssR is necessary for growth of S. aureus in high concentrations of heme. Finally, we show that a direct repeat DNA sequence within the hrtAB promoter is required for heme-induced, HssR-dependent expression driven by this promoter and that phosphorylated HssR binds to this direct repeat upon exposure of S. aureus to high concentrations of heme. Taken together, these data establish the mechanism for HssRS-dependent expression of HrtAB and, in turn, provide a functional understanding for how S. aureus avoids heme-mediated toxicity.


Journal of Bacteriology | 2008

Staphylococcus aureus HrtA Is an ATPase Required for Protection against Heme Toxicity and Prevention of a Transcriptional Heme Stress Response

Devin L. Stauff; Danielle Bagaley; Victor J. Torres; Rose Joyce; Kelsi L. Anderson; Lisa J. Kuechenmeister; Paul M. Dunman; Eric P. Skaar

During systemic infection, Staphylococcus aureus acquires nutrient iron from heme, the cofactor of vertebrate myoglobin and hemoglobin. Upon exposure to heme, S. aureus up-regulates the expression of the heme-regulated transporter, HrtAB. Strains lacking hrtAB exhibit increased sensitivity to heme toxicity, and upon heme exposure they elaborate a secreted protein response that interferes with the recruitment of neutrophils to the site of infection. Taken together, these results have led to the suggestion that hrtAB encodes an efflux system responsible for relieving the toxic effects of accumulated heme. Here we extend these observations by demonstrating that HrtA is the ATPase component of the HrtAB transport system. We show that HrtA is an Mn(2+)/Mg(2+)-dependent ATPase that functions at an optimal pH of 7.5 and exhibits in vitro temperature dependence uncommon to ABC transporter ATPases. Furthermore, we identify conserved residues within HrtA that are required for in vitro ATPase activity and are essential for the functionality of HrtA in vivo. Finally, we show that heme induces an alteration in the gene expression pattern of S. aureus Delta hrtA, implying the presence of a novel transcriptional regulatory mechanism responsible for the previously described immunomodulatory characteristics of hrtA mutants exposed to heme.


Molecular Microbiology | 2009

Bacillus anthracis HssRS signalling to HrtAB regulates haem resistance during infection.

Devin L. Stauff; Eric P. Skaar

Bacillus anthracis proliferates to high levels within vertebrate tissues during the pathogenesis of anthrax. This growth is facilitated by the acquisition of nutrient iron from host haem. However, haem acquisition can lead to the accumulation of toxic amounts of haem within B. anthracis. Here, we show that B. anthracis resists haem toxicity by sensing haem through the HssRS two‐component system, which regulates expression of the haem‐detoxifying transporter HrtAB. In addition, we demonstrate that B. anthracis exhibits elevated HssRS function compared with its evolutionary relative Staphylococcus aureus. Elevated haem sensing is likely required by B. anthracis due to the significant haem sensitivity exhibited by members of the genus Bacilli. We also demonstrate that B. anthracis depends on conserved residues within the previously uncharacterized sensing domain of the histidine kinase HssS for HssS function. Finally, we show that the haem‐ and HssRS‐regulated hrtAB promoter is activated in a murine model of anthrax. These results demonstrate the evolutionary conservation of haem sensing among multiple Gram‐positive bacteria and begin to provide a mechanistic explanation for the haem resistance of B. anthracis. Further, these data suggest that haem stress is experienced by bacterial pathogens during infection.


Molecular Microbiology | 2012

Menaquinone biosynthesis potentiates haem toxicity in Staphylococcus aureus

Catherine A. Wakeman; Neal D. Hammer; Devin L. Stauff; Ahmed S. Attia; Laura L. Anzaldi; Sergey Dikalov; M. Wade Calcutt; Eric P. Skaar

Staphylococcus aureus is a pathogen that infects multiple anatomical sites leading to a diverse array of diseases. Although vertebrates can restrict the growth of invading pathogens by sequestering iron within haem, S. aureus surmounts this challenge by employing high‐affinity haem uptake systems. However, the presence of excess haem is highly toxic, necessitating tight regulation of haem levels. To overcome haem stress, S. aureus expresses the detoxification system HrtAB. In this work, a transposon screen was performed in the background of a haem‐susceptible, HrtAB‐deficient S. aureus strain to identify the substrate transported by this putative pump and the source of haem toxicity. While a recent report indicates that HrtAB exports haem itself, the haem‐resistant mutants uncovered by the transposon selection enabled us to elucidate the cellular factors contributing to haem toxicity. All mutants identified in this screen inactivated the menaquinone (MK) biosynthesis pathway. Deletion of the final steps of this pathway revealed that quinone molecules localizing to the cell membrane potentiate haem‐associated superoxide production and subsequent oxidative damage. These data suggest a model in which membrane‐associated haem and quinone molecules form a redox cycle that continuously generates semiquinones and reduced haem, both of which react with atmospheric oxygen to produce superoxide.


Contributions to microbiology | 2009

The Heme Sensor System of Staphylococcus aureus

Devin L. Stauff; Eric P. Skaar

The important human pathogen Staphylococcus aureus is able to satisfy its nutrient iron requirement by acquiring heme from host hemoglobin in the context of infection. However, heme acquisition exposes S. aureus to heme toxicity. In order to detect the presence of toxic levels of exogenous heme, S. aureus is able to sense heme through the heme sensing system (HssRS) two-component system. Upon sensing heme, HssRS directly regulates the expression of the heme-regulated ABC transporter HrtAB, which alleviates heme toxicity. Importantly, the inability to sense or respond to heme alters the virulence of S. aureus, highlighting the importance of heme sensing and detoxification to staphylococcal pathogenesis. Furthermore, potential orthologues of the Hss and Hrt systems are found in many species of Gram-positive bacteria, a possible indication that heme stress is a challenge faced by bacteria whose habitats include host tissues rich in heme.


PLOS Pathogens | 2010

Membrane damage elicits an immunomodulatory program in Staphylococcus aureus.

Ahmed S. Attia; Meredith A. Benson; Devin L. Stauff; Victor J. Torres; Eric P. Skaar

The Staphylococcus aureus HrtAB system is a hemin-regulated ABC transporter composed of an ATPase (HrtA) and a permease (HrtB) that protect S. aureus against hemin toxicity. S. aureus strains lacking hrtA exhibit liver-specific hyper-virulence and upon hemin exposure over-express and secrete immunomodulatory factors that interfere with neutrophil recruitment to the site of infection. It has been proposed that heme accumulation in strains lacking hrtAB is the signal which triggers S. aureus to elaborate this anti-neutrophil response. However, we report here that S. aureus strains expressing catalytically inactive HrtA do not elaborate the same secreted protein profile. This result indicates that the physical absence of HrtA is responsible for the increased expression of immunomodulatory factors, whereas deficiencies in the ATPase activity of HrtA do not contribute to this process. Furthermore, HrtB expression in strains lacking hrtA decreases membrane integrity consistent with dysregulated permease function. Based on these findings, we propose a model whereby hemin-mediated over-expression of HrtB in the absence of HrtA damages the staphylococcal membrane through pore formation. In turn, S. aureus senses this membrane damage, triggering the increased expression of immunomodulatory factors. In support of this model, wildtype S. aureus treated with anti-staphylococcal channel-forming peptides produce a secreted protein profile that mimics the effect of treating ΔhrtA with hemin. These results suggest that S. aureus senses membrane damage and elaborates a gene expression program that protects the organism from the innate immune response of the host.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Activation of heme biosynthesis by a small molecule that is toxic to fermenting Staphylococcus aureus

Laura A. Mike; Brendan F. Dutter; Devin L. Stauff; Jessica L. Moore; Nicholas P. Vitko; Olusegun O. Aranmolate; Thomas E. Kehl-Fie; Sarah A. Sullivan; Paul R Reid; Jennifer L. DuBois; Anthony R. Richardson; Richard M. Caprioli; Gary A. Sulikowski; Eric P. Skaar

Staphylococcus aureus is a significant infectious threat to global public health. Acquisition or synthesis of heme is required for S. aureus to capture energy through respiration, but an excess of this critical cofactor is toxic to bacteria. S. aureus employs the heme sensor system (HssRS) to overcome heme toxicity; however, the mechanism of heme sensing is not defined. Here, we describe the identification of a small molecule activator of HssRS that induces endogenous heme biosynthesis by perturbing central metabolism. This molecule is toxic to fermenting S. aureus, including clinically relevant small colony variants. The utility of targeting fermenting bacteria is exemplified by the fact that this compound prevents the emergence of antibiotic resistance, enhances phagocyte killing, and reduces S. aureus pathogenesis. Not only is this small molecule a powerful tool for studying bacterial heme biosynthesis and central metabolism; it also establishes targeting of fermentation as a viable antibacterial strategy.

Collaboration


Dive into the Devin L. Stauff's collaboration.

Top Co-Authors

Avatar

Eric P. Skaar

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelsi L. Anderson

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine A. Wakeman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge