Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gleb Pishchany is active.

Publication


Featured researches published by Gleb Pishchany.


Journal of Bacteriology | 2006

Staphylococcus aureus IsdB Is a Hemoglobin Receptor Required for Heme Iron Utilization

Victor J. Torres; Gleb Pishchany; Munir Humayun; Olaf Schneewind; Eric P. Skaar

The pathogenesis of human infections caused by the gram-positive microbe Staphylococcus aureus has been previously shown to be reliant on the acquisition of iron from host hemoproteins. The iron-regulated surface determinant system (Isd) encodes a heme transport apparatus containing three cell wall-anchored proteins (IsdA, IsdB, and IsdH) that are exposed on the staphylococcal surface and hence have the potential to interact with human hemoproteins. Here we report that S. aureus can utilize the host hemoproteins hemoglobin and myoglobin, but not hemopexin, as iron sources for bacterial growth. We demonstrate that staphylococci capture hemoglobin on the bacterial surface via IsdB and that inactivation of isdB, but not isdA or isdH, significantly decreases hemoglobin binding to the staphylococcal cell wall and impairs the ability of S. aureus to utilize hemoglobin as an iron source. Stable-isotope-tracking experiments revealed removal of heme iron from hemoglobin and transport of this compound into staphylococci. Importantly, mutants lacking isdB, but not isdH, display a reduction in virulence in a murine model of abscess formation. Thus, IsdB-mediated scavenging of iron from hemoglobin represents an important virulence strategy for S. aureus replication in host tissues and for the establishment of persistent staphylococcal infections.


PLOS Pathogens | 2006

Staphylococcus aureus Redirects Central Metabolism to Increase Iron Availability

David B. Friedman; Devin L. Stauff; Gleb Pishchany; Corbin W. Whitwell; Victor J. Torres; Eric P. Skaar

Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment) or genetic (Δfur) alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB), a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus.


Infection and Immunity | 2009

Subcellular localization of the Staphylococcus aureus heme iron transport components IsdA and IsdB.

Gleb Pishchany; Susan E. Dickey; Eric P. Skaar

ABSTRACT Staphylococcus aureus is a human pathogen that represents a tremendous threat to global public health. An important aspect of S. aureus pathogenicity is the ability to acquire iron from its host during infection. In vertebrates, iron is sequestered predominantly within heme, the majority of which is bound by hemoglobin. To acquire iron, S. aureus binds hemoglobin, removes heme, and transports it into the cytoplasm, where heme is degraded. This process is carried out by the iron-regulated surface determinant system (Isd); however, the mechanism by which hemoglobin recognition occurs is not completely understood. Here we report that the surface receptor components of the Isd system, IsdA and IsdB, physically interact with each other and are anchored to a discrete location within the cell wall. This organized localization pattern is dependent upon the iron status of the bacterium. Furthermore, we have found that hemoglobin colocalizes with IsdB at discrete sites within the cell wall. Virulence studies revealed that IsdB is required for the efficient colonization of the heart and that IsdB is differentially expressed within infected organs, suggesting that S. aureus experiences various degrees of iron starvation depending on the site of infection. These findings significantly expand our understanding of hemoglobin iron acquisition and demonstrate an orchestrated pattern of regulation and localization for the S. aureus heme iron acquisition system.


Journal of Biological Chemistry | 2011

Structural basis for hemoglobin capture by Staphylococcus aureus cell-surface protein, IsdH.

Kaavya Krishna Kumar; David A. Jacques; Gleb Pishchany; Tom T. Caradoc-Davies; Thomas Spirig; G. Reza Malmirchegini; David B. Langley; Claire F. Dickson; Joel P. Mackay; Robert T. Clubb; Eric P. Skaar; J. Mitchell Guss; David A. Gell

Background: Bacteria need iron from the host to establish infection. Results: We report the first structure of hemoglobin bound to a bacterial protein and show that targeted disruption of this interaction can reduce Staphylococcus aureus growth when hemoglobin is the sole iron source. Conclusion: Physical capture of hemoglobin is important for iron uptake by S. aureus. Significance: Hemoglobin receptors may be targets for new antibacterial agents. Pathogens must steal iron from their hosts to establish infection. In mammals, hemoglobin (Hb) represents the largest reservoir of iron, and pathogens express Hb-binding proteins to access this source. Here, we show how one of the commonest and most significant human pathogens, Staphylococcus aureus, captures Hb as the first step of an iron-scavenging pathway. The x-ray crystal structure of Hb bound to a domain from the Isd (iron-regulated surface determinant) protein, IsdH, is the first structure of a Hb capture complex to be determined. Surface mutations in Hb that reduce binding to the Hb-receptor limit the capacity of S. aureus to utilize Hb as an iron source, suggesting that Hb sequence is a factor in host susceptibility to infection. The demonstration that pathogens make highly specific recognition complexes with Hb raises the possibility of developing inhibitors of Hb binding as antibacterial agents.


The Journal of Infectious Diseases | 2014

IsdB-dependent Hemoglobin Binding Is Required for Acquisition of Heme by Staphylococcus aureus

Gleb Pishchany; Jessica R. Sheldon; Claire F. Dickson; Tauqeer Alam; Timothy D. Read; David A. Gell; David E. Heinrichs; Eric P. Skaar

Staphylococcus aureus is a Gram-positive pathogen responsible for tremendous morbidity and mortality. As with most bacteria, S. aureus requires iron to cause disease, and it can acquire iron from host hemoglobin. The current model for staphylococcal hemoglobin-iron acquisition proposes that S. aureus binds hemoglobin through the surface-exposed hemoglobin receptor IsdB. IsdB removes heme from bound hemoglobin and transfers this cofactor to other proteins of the Isd system, which import and degrade heme to release iron in the cytoplasm. Here we demonstrate that the individual components of the Isd system are required for growth on low nanomolar concentrations of hemoglobin as a sole source of iron. An in-depth study of hemoglobin binding by IsdB revealed key residues that are required for hemoglobin binding. Further, we show that these residues are necessary for heme extraction from hemoglobin and growth on hemoglobin as a sole iron source. These processes are found to contribute to the pathogenicity of S. aureus in a murine model of infection. Together these results build on the model for Isd-mediated hemoglobin binding and heme-iron acquisition during the pathogenesis of S. aureus infection.


PLOS Pathogens | 2012

Taste for blood: hemoglobin as a nutrient source for pathogens.

Gleb Pishchany; Eric P. Skaar

Hemoglobin, which gives blood its red color, is perhaps the most recognized and well studied protein in nature. It is also a critical molecule during infection, as many microbes rely on hemoglobin to grow within their hosts. Here, we review the importance of hemoglobin to vertebrate physiology and how humans attempt to conceal hemoglobin from invading pathogens. We also provide examples of the elaborate mechanisms employed by microbes to acquire hemoglobin during infection. Finally, we discuss how genetic variations within hemoglobin affect susceptibility to infectious diseases.


Journal of Visualized Experiments | 2013

Staphylococcus aureus Growth using Human Hemoglobin as an Iron Source

Gleb Pishchany; Kathryn P. Haley; Eric P. Skaar

S. aureus is a pathogenic bacterium that requires iron to carry out vital metabolic functions and cause disease. The most abundant reservoir of iron inside the human host is heme, which is the cofactor of hemoglobin. To acquire iron from hemoglobin, S. aureus utilizes an elaborate system known as the iron-regulated surface determinant (Isd) system. Components of the Isd system first bind host hemoglobin, then extract and import heme, and finally liberate iron from heme in the bacterial cytoplasm. This pathway has been dissected through numerous in vitro studies. Further, the contribution of the Isd system to infection has been repeatedly demonstrated in mouse models. Establishing the contribution of the Isd system to hemoglobin-derived iron acquisition and growth has proven to be more challenging. Growth assays using hemoglobin as a sole iron source are complicated by the instability of commercially available hemoglobin, contaminating free iron in the growth medium, and toxicity associated with iron chelators. Here we present a method that overcomes these limitations. High quality hemoglobin is prepared from fresh blood and is stored in liquid nitrogen. Purified hemoglobin is supplemented into iron-deplete medium mimicking the iron-poor environment encountered by pathogens inside the vertebrate host. By starving S. aureus of free iron and supplementing with a minimally manipulated form of hemoglobin we induce growth in a manner that is entirely dependent on the ability to bind hemoglobin, extract heme, pass heme through the bacterial cell envelope and degrade heme in the cytoplasm. This assay will be useful for researchers seeking to elucidate the mechanisms of hemoglobin-/heme-derived iron acquisition in S. aureus and possibly other bacterial pathogens.


Genome Announcements | 2016

Whole-Genome Sequence of Bacillus sp. SDLI1, Isolated from the Social Bee Scaptotrigona depilis.

Camila R. Paludo; Antonio C. Ruzzini; Eduardo A. Silva-Junior; Gleb Pishchany; Cameron R. Currie; Fabio S. Nascimento; Roberto Kolter; Jon Clardy; Mônica T. Pupo

ABSTRACT We announce the complete genome sequence of Bacillus sp. strain SDLI1, isolated from larval gut of the stingless bee Scaptotrigona depilis. The 4.13-Mb circular chromosome harbors biosynthetic gene clusters for the production of antimicrobial compounds.


Scientific Reports | 2018

Stingless Bee Larvae Require Fungal Steroid to Pupate

Camila R. Paludo; Cristiano Menezes; Eduardo A. Silva-Junior; Ayrton Vollet-Neto; Andrés Andrade-Domínguez; Gleb Pishchany; Lily Khadempour; Fabio S. Nascimento; Cameron R. Currie; Roberto Kolter; Jon Clardy; Mônica T. Pupo

The larval stage of the stingless bee Scaptotrigona depilis must consume a specific brood cell fungus in order to continue development. Here we show that this fungus is a member of the genus Zygosaccharomyces and provides essential steroid precursors to the developing bee. Insect pupation requires ecdysteroid hormones, and as insects cannot synthesize sterols de novo, they must obtain steroids in their diet. Larval in vitro culturing assays demonstrated that consuming ergosterol recapitulates the developmental effects on S. depilis as ingestion of Zygosaccharomyces sp. cells. Thus, we determined the molecular underpinning of this intimate mutualistic symbiosis. Phylogenetic analyses showed that similar cases of bee-Zygosaccharomyces symbiosis may exist. This unprecedented case of bee-fungus symbiosis driven by steroid requirement brings new perspectives regarding pollinator-microbiota interaction and preservation.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen

Gleb Pishchany; Emily Mevers; Sula Ndousse-Fetter; Dennis J. Horvath; Camila R. Paludo; Eduardo A. Silva-Junior; Sergey Koren; Eric P. Skaar; Jon Clardy; Roberto Kolter

Significance Bacteria, especially actinomycetes, produce the majority of our clinically useful small-molecule antibiotics. Genomic analyses of antibiotic-producing strains indicate that earlier discovery efforts revealed only a fraction of the likely antibiotic candidates. In an effort to uncover these previously missed candidates, we developed an approach that utilizes the ability of microbial communities to produce antibiotics that are not produced by any single member in isolation. Successful communities were established and deconvoluted to identify both producers and inducers of antibiotic activity. One inducer–producer pair made amycomicin, a potent and specific antibiotic against Staphylococcus aureus, an important human pathogen. Amycomicin targets fatty acid biosynthesis and exhibits in vivo efficacy against antibiotic-resistant skin infections in a mouse model. The rapid emergence of antibiotic-resistant pathogenic bacteria has accelerated the search for new antibiotics. Many clinically used antibacterials were discovered through culturing a single microbial species under nutrient-rich conditions, but in the environment, bacteria constantly encounter poor nutrient conditions and interact with neighboring microbial species. In an effort to recapitulate this environment, we generated a nine-strain actinomycete community and used 16S rDNA sequencing to deconvolute the stochastic production of antimicrobial activity that was not observed from any of the axenic cultures. We subsequently simplified the community to just two strains and identified Amycolatopsis sp. AA4 as the producing strain and Streptomyces coelicolor M145 as an inducing strain. Bioassay-guided isolation identified amycomicin (AMY), a highly modified fatty acid containing an epoxide isonitrile warhead as a potent and specific inhibitor of Staphylococcus aureus. Amycomicin targets an essential enzyme (FabH) in fatty acid biosynthesis and reduces S. aureus infection in a mouse skin-infection model. The discovery of AMY demonstrates the utility of screening complex communities against specific targets to discover small-molecule antibiotics.

Collaboration


Dive into the Gleb Pishchany's collaboration.

Top Co-Authors

Avatar

Eric P. Skaar

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire F. Dickson

Menzies Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cameron R. Currie

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Devin L. Stauff

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge