Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Devjit Tripathy is active.

Publication


Featured researches published by Devjit Tripathy.


Diabetes Care | 2009

Skeletal Muscle Insulin Resistance Is the Primary Defect in Type 2 Diabetes

Ralph A. DeFronzo; Devjit Tripathy

Insulin resistance is a characteristic feature of type 2 diabetes and plays a major role in the pathogenesis of the disease (1,2). Although β-cell failure is the sine qua non for development of type 2 diabetes, skeletal muscle insulin resistance is considered to be the initiating or primary defect that is evident decades before β-cell failure and overt hyperglycemia develops (3,4). Insulin resistance is defined as a reduced response of target tissues (compared with subjects with normal glucose tolerance [NGT] without a family history of diabetes), such as the skeletal muscle, liver, and adipocytes, to insulin. Because skeletal muscle is the predominant site of insulin-mediated glucose uptake in the postprandial state, here we will focus on recent advances about the time of onset, as well as the mechanism, of the skeletal muscle insulin resistance. The euglycemic insulin clamp technique (5) is considered to be the gold standard for measuring insulin action in vivo. With this technique, whole-body insulin action is quantified as the rate of exogenous glucose infusion (plus any residual hepatic glucose production) required to maintain the plasma glucose concentration at euglycemic levels in response to a fixed increment in the plasma insulin concentration. Because 80–90% of the infused glucose is taken up by skeletal muscle under conditions of euglycemic hyperinsulinemia, insulin sensitivity measured with the insulin clamp technique primarily reflects skeletal muscle (6). Another advantage of this technique is that it can be combined with indirect calorimetry to measure different substrate oxidation rates and with muscle biopsy to examine the biochemical/molecular etiology of the insulin resistance. Measurement of insulin sensitivity by the frequently sampled intravenous glucose tolerance test reflects both hepatic and peripheral insulin resistance and correlates well with the insulin clamp technique (7). Because insulin clamp studies are not feasible in large …


The New England Journal of Medicine | 2011

Pioglitazone for Diabetes Prevention in Impaired Glucose Tolerance

Ralph A. DeFronzo; Devjit Tripathy; Dawn C. Schwenke; MaryAnn Banerji; George A. Bray; Thomas A. Buchanan; Stephen Clement; Robert R. Henry; Howard N. Hodis; Abbas E. Kitabchi; Wendy J. Mack; Sunder Mudaliar; Robert E. Ratner; Ken Williams; Frankie B. Stentz; Nicolas Musi

BACKGROUND Impaired glucose tolerance is associated with increased rates of cardiovascular disease and conversion to type 2 diabetes mellitus. Interventions that may prevent or delay such occurrences are of great clinical importance. METHODS We conducted a randomized, double-blind, placebo-controlled study to examine whether pioglitazone can reduce the risk of type 2 diabetes mellitus in adults with impaired glucose tolerance. A total of 602 patients were randomly assigned to receive pioglitazone or placebo. The median follow-up period was 2.4 years. Fasting glucose was measured quarterly, and oral glucose tolerance tests were performed annually. Conversion to diabetes was confirmed on the basis of the results of repeat testing. RESULTS Annual incidence rates for type 2 diabetes mellitus were 2.1% in the pioglitazone group and 7.6% in the placebo group, and the hazard ratio for conversion to diabetes in the pioglitazone group was 0.28 (95% confidence interval, 0.16 to 0.49; P<0.001). Conversion to normal glucose tolerance occurred in 48% of the patients in the pioglitazone group and 28% of those in the placebo group (P<0.001). Treatment with pioglitazone as compared with placebo was associated with significantly reduced levels of fasting glucose (a decrease of 11.7 mg per deciliter vs. 8.1 mg per deciliter [0.7 mmol per liter vs. 0.5 mmol per liter], P<0.001), 2-hour glucose (a decrease of 30.5 mg per deciliter vs. 15.6 mg per deciliter [1.6 mmol per liter vs. 0.9 mmol per liter], P<0.001), and HbA(1c) (a decrease of 0.04 percentage points vs. an increase of 0.20 percentage points, P<0.001). Pioglitazone therapy was also associated with a decrease in diastolic blood pressure (by 2.0 mm Hg vs. 0.0 mm Hg, P=0.03), a reduced rate of carotid intima-media thickening (31.5%, P=0.047), and a greater increase in the level of high-density lipoprotein cholesterol (by 7.35 mg per deciliter vs. 4.5 mg per deciliter [0.4 mmol per liter vs. 0.3 mmol per liter], P=0.008). Weight gain was greater with pioglitazone than with placebo (3.9 kg vs. 0.77 kg, P<0.001), and edema was more frequent (12.9% vs. 6.4%, P=0.007). CONCLUSIONS As compared with placebo, pioglitazone reduced the risk of conversion of impaired glucose tolerance to type 2 diabetes mellitus by 72% but was associated with significant weight gain and edema. (Funded by Takeda Pharmaceuticals and others; ClinicalTrials.gov number, NCT00220961.).


Diabetes | 2006

Insulin Secretion and Action in Subjects With Impaired Fasting Glucose and Impaired Glucose Tolerance Results From the Veterans Administration Genetic Epidemiology Study

Muhammad A. Abdul-Ghani; Christopher P. Jenkinson; Dawn K. Richardson; Devjit Tripathy; Ralph A. DeFronzo

This study was conducted to observe changes in insulin secretion and insulin action in subjects with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT). A total of 319 subjects were studied with an oral glucose tolerance test (OGTT). Fasting plasma glucose and insulin concentrations were measured at baseline and every 30 min during the OGTT. Fifty-eight subjects also received a euglycemic-hyperinsulinemic clamp. Insulin sensitivity was calculated as the total glucose disposal (TGD) during the last 30 min of the clamp. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from fasting plasma glucose and insulin concentrations. Subjects with IFG had TGD similar to normal glucose-tolerant subjects, while subjects with IGT and combined IFG/IGT had significantly reduced TGD. HOMA-IR in subjects with IFG was similar to that in subjects with combined IFG/IGT and significantly higher than HOMA-IR in subjects with IGT or NGT. Insulin secretion, measured by the insulinogenic index (ΔI0–30/ΔG0–30) and by the ratio of the incremental area under the curve (AUC) of insulin to the incremental AUC of glucose (0–120 min), was reduced to the same extent in all three glucose-intolerant groups. When both measurements of β-cell function were adjusted for severity of insulin resistance, subjects with IGT and combined IFG/IGT had a significantly greater reduction in insulin secretion than subjects with IFG. Subjects with IGT and IFG have different metabolic characteristics. Differences in insulin sensitivity and insulin secretion may predict different rates of progression to type 2 diabetes and varying susceptibility to cardiovascular disease.


Journal of Clinical Investigation | 2014

Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production.

Aurora Merovci; Carolina Solis-Herrera; Giuseppe Daniele; Roy Eldor; Teresa Vanessa Fiorentino; Devjit Tripathy; Juan Xiong; Zandra Perez; Luke Norton; Muhammad A. Abdul-Ghani; Ralph A. DeFronzo

Chronic hyperglycemia impairs insulin action, resulting in glucotoxicity, which can be ameliorated in animal models by inducing glucosuria with renal glucose transport inhibitors. Here, we examined whether reduction of plasma glucose with a sodium-glucose cotransporter 2 (SGLT2) inhibitor could improve insulin-mediated tissue glucose disposal in patients with type 2 diabetes. Eighteen diabetic men were randomized to receive either dapagliflozin (n = 12) or placebo (n = 6) for 2 weeks. We measured insulin-mediated whole body glucose uptake and endogenous glucose production (EGP) at baseline and 2 weeks after treatment using the euglycemic hyperinsulinemic clamp technique. Dapagliflozin treatment induced glucosuria and markedly lowered fasting plasma glucose. Insulin-mediated tissue glucose disposal increased by approximately 18% after 2 weeks of dapagliflozin treatment, while placebo-treated subjects had no change in insulin sensitivity. Surprisingly, following dapagliflozin treatment, EGP increased substantially and was accompanied by an increase in fasting plasma glucagon concentration. Together, our data indicate that reduction of plasma glucose with an agent that works specifically on the kidney to induce glucosuria improves muscle insulin sensitivity. However, glucosuria induction following SGLT2 inhibition is associated with a paradoxical increase in EGP. These results provide support for the glucotoxicity hypothesis, which suggests that chronic hyperglycemia impairs insulin action in individuals with type 2 diabetes.


Circulation | 2004

Anti-Inflammatory and Profibrinolytic Effect of Insulin in Acute ST-Segment–Elevation Myocardial Infarction

Ajay Chaudhuri; David Janicke; Michael F. Wilson; Devjit Tripathy; Rajesh Garg; Arindam Bandyopadhyay; Janeen Calieri; Debbie Hoffmeyer; Tufail Syed; Husam Ghanim; Ahmad Aljada; Paresh Dandona

Background—The clinical benefits of insulin previously observed in acute ST-segment–elevation myocardial infarction (STEMI) may be partially explained by an anti-inflammatory effect. We assessed this potential effect of insulin in STEMI patients treated with fibrinolytics. Methods and Results—Thirty-two patients receiving reteplase were randomly assigned infusions of either insulin at 2.5 U/h, dextrose, and potassium (GIK) or normal saline and potassium (C) for 48 hours. Plasma concentrations of high-sensitivity C-reactive protein (CRP), serum amyloid A (SAA), plasminogen activator inhibitor-1 (PAI-1), creatine kinase (CK), and CK-MB were measured at baseline and sequentially for 48 hours. Total p47phox protein in mononuclear cells was measured in a subgroup of 13 subjects. Baseline CRP and SAA were significantly increased (2- to 4-fold) at 24 and 48 hours in each group (P <0.01). However, in the insulin group, there was a significant (P <0.05) attenuation of the absolute rise in concentration of CRP and SAA from baseline. The absolute increase of CRP and SAA was reduced by 40% (CRP) and 50% (SAA) at 24 hours and at 48 hours compared with the control group. The absolute increase in PAI-1 from baseline and the percentage increase in p47phox over 48 hours were significantly (P <0.05) lower in the insulin-treated group. CK-MB peaked earlier and tended to be lower in insulin-treated subjects, especially in patients with inferior MI. Conclusions—Insulin has an anti-inflammatory and profibrinolytic effect in patients with acute MI. These effects may contribute to the clinical benefits of insulin in STEMI.


Diabetes Care | 2009

Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance

Alberto O. Chavez; Marjorie Molina-Carrion; Muhammad A. Abdul-Ghani; Franco Folli; Ralph A. DeFronzo; Devjit Tripathy

OBJECTIVE Fibroblast growth factor (FGF)-21 is highly expressed in the liver and regulates hepatic glucose production and lipid metabolism in rodents. However, its role in the pathogenesis of type 2 diabetes in humans remains to be defined. The aim of this study was to quantitate circulating plasma FGF-21 levels and examine their relationship with insulin sensitivity in subjects with varying degrees of obesity and glucose tolerance. RESEARCH DESIGN AND METHODS Forty-one subjects (8 lean with normal glucose tolerance [NGT], 9 obese with NGT, 12 with impaired fasting glucose [IFG]/impaired glucose tolerance [IGT], and 12 type 2 diabetic subjects) received an oral glucose tolerance test (OGTT) and a hyperinsulinemic-euglycemic clamp (80 mU/m2 per min) combined with 3-[3H] glucose infusion. RESULTS Subjects with type 2 diabetes, subjects with IGT, and obese subjects with NGT were insulin resistant compared with lean subjects with NGT. Plasma FGF-21 levels progressively increased from 3.9 ± 0.3 ng/ml in lean subjects with NGT to 4.9 ± 0.2 in obese subjects with NGT to 5.2 ± 0.2 in subjects with IGT and to 5.3 ± 0.2 in type 2 diabetic subjects. FGF-21 levels correlated inversely with whole-body (primarily reflects muscle) insulin sensitivity (r = −0.421, P = 0.007) and directly with the hepatic insulin resistance index (r = 0.344, P = 0.034). FGF-21 levels also correlated with measures of glycemia (fasting plasma glucose [r = 0.312, P = 0.05], 2-h plasma glucose [r = 0.414, P = 0.01], and A1C [r = 0.325, P = 0.04]). CONCLUSIONS Plasma FGF-21 levels are increased in insulin-resistant states and correlate with hepatic and whole-body (muscle) insulin resistance. FGF-21 may play a role in pathogenesis of hepatic and whole-body insulin resistance in type 2 diabetes.


JAMA | 2013

The effect of nonsurgical periodontal therapy on hemoglobin a1c levels in persons with type 2 diabetes and chronic periodontitis a randomized clinical trial

Steven P. Engebretson; Leslie Hyman; Bryan S. Michalowicz; Elinor Schoenfeld; Marie C. Gelato; Wei Hou; Elizabeth R. Seaquist; Michael S. Reddy; Cora E. Lewis; Thomas W. Oates; Devjit Tripathy; James A. Katancik; Philip R. Orlander; David W. Paquette; Naomi Q. Hanson; Michael Y. Tsai

IMPORTANCE Chronic periodontitis, a destructive inflammatory disorder of the supporting structures of the teeth, is prevalent in patients with diabetes. Limited evidence suggests that periodontal therapy may improve glycemic control. OBJECTIVE To determine if nonsurgical periodontal treatment reduces levels of glycated hemoglobin (HbA1c) in persons with type 2 diabetes and moderate to advanced chronic periodontitis. DESIGN, SETTING, AND PARTICIPANTS The Diabetes and Periodontal Therapy Trial (DPTT), a 6-month, single-masked, multicenter, randomized clinical trial. Participants had type 2 diabetes, were taking stable doses of medications, had HbA1c levels between 7% and less than 9%, and untreated chronic periodontitis. Five hundred fourteen participants were enrolled between November 2009 and March 2012 from diabetes and dental clinics and communities affiliated with 5 academic medical centers. INTERVENTIONS The treatment group (n = 257) received scaling and root planing plus chlorhexidine oral rinse at baseline and supportive periodontal therapy at 3 and 6 months. The control group (n = 257) received no treatment for 6 months. MAIN OUTCOMES AND MEASURES Difference in change in HbA1c level from baseline between groups at 6 months. Secondary outcomes included changes in probing pocket depths, clinical attachment loss, bleeding on probing, gingival index, fasting glucose level, and Homeostasis Model Assessment (HOMA2) score. RESULTS Enrollment was stopped early because of futility. At 6 months, mean HbA1c levels in the periodontal therapy group increased 0.17% (SD, 1.0), compared with 0.11% (SD, 1.0) in the control group, with no significant difference between groups based on a linear regression model adjusting for clinical site (mean difference, -0.05% [95% CI, -0.23% to 0.12%]; P = .55). Periodontal measures improved in the treatment group compared with the control group at 6 months, with adjusted between-group differences of 0.28 mm (95% CI, 0.18 to 0.37) for probing depth, 0.25 mm (95% CI, 0.14 to 0.36) for clinical attachment loss, 13.1% (95% CI, 8.1% to 18.1%) for bleeding on probing, and 0.27 (95% CI, 0.17 to 0.37) for gingival index (P < .001 for all). CONCLUSIONS AND RELEVANCE Nonsurgical periodontal therapy did not improve glycemic control in patients with type 2 diabetes and moderate to advanced chronic periodontitis. These findings do not support the use of nonsurgical periodontal treatment in patients with diabetes for the purpose of lowering levels of HbA1c. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00997178.


Current Drug Targets | 2003

Insulin Resistance as a Proinflammatory State: Mechanisms, Mediators, and Therapeutic Interventions

Rajesh Garg; Devjit Tripathy; Paresh Dandona

Insulin resistance has been recognized as an inflammatory disease based on the scientific evidence collected over the last decade. Inflammatory markers like CRP, PAI-1, IL-6 are present in higher concentrations in insulin resistant people than in normal people. Mechanisms, linking inflammation to insulin resistance are being explored and progress has been made in this direction. TNFalpha has been shown to be responsible for insulin resistance in obese subjects. Macronutrient intake may also induce inflammation whereas fasting has anti-inflammatory effects. Insulin itself has been found to be anti-inflammatory and this action may be useful in many disease states. Thiazolidinediones, such as rosiglitazone that act primarily as insulin sensitisers, have a profound anti-inflammatory and potentially antiatherosclerotic activity. These effects may be of considerable clinical significance if sustained during long-term therapy, given the morbidity and mortality associated with atherosclerosis, the major complication of insulin resistance.


BMC Endocrine Disorders | 2009

Actos Now for the prevention of diabetes (ACT NOW) study

Ralph A. DeFronzo; MaryAnn Banerji; George A. Bray; Thomas A. Buchanan; Stephen Clement; Robert R. Henry; Abbas E. Kitabchi; Sunder Mudaliar; Nicolas Musi; Robert E. Ratner; Dawn C. Schwenke; Frankie B. Stentz; Devjit Tripathy

BackgroundImpaired glucose tolerance (IGT) is a prediabetic state. If IGT can be prevented from progressing to overt diabetes, hyperglycemia-related complications can be avoided. The purpose of the present study was to examine whether pioglitazone (ACTOS®) can prevent progression of IGT to type 2 diabetes mellitus (T2DM) in a prospective randomized, double blind, placebo controlled trial.Methods/Design602 IGT subjects were identified with OGTT (2-hour plasma glucose = 140–199 mg/dl). In addition, IGT subjects were required to have FPG = 95–125 mg/dl and at least one other high risk characteristic. Prior to randomization all subjects had measurement of ankle-arm blood pressure, systolic/diastolic blood pressure, HbA1C, lipid profile and a subset had frequently sampled intravenous glucose tolerance test (FSIVGTT), DEXA, and ultrasound determination of carotid intima-media thickness (IMT). Following this, subjects were randomized to receive pioglitazone (45 mg/day) or placebo, and returned every 2–3 months for FPG determination and annually for OGTT. Repeat carotid IMT measurement was performed at 18 months and study end. Recruitment took place over 24 months, and subjects were followed for an additional 24 months. At study end (48 months) or at time of diagnosis of diabetes the OGTT, FSIVGTT, DEXA, carotid IMT, and all other measurements were repeated.Primary endpoint is conversion of IGT to T2DM based upon FPG ≥ 126 or 2-hour PG ≥ 200 mg/dl. Secondary endpoints include whether pioglitazone can: (i) improve glycemic control (ii) enhance insulin sensitivity, (iii) augment beta cell function, (iv) improve risk factors for cardiovascular disease, (v) cause regression/slow progression of carotid IMT, (vi) revert newly diagnosed diabetes to normal glucose tolerance.ConclusionACT NOW is designed to determine if pioglitazone can prevent/delay progression to diabetes in high risk IGT subjects, and to define the mechanisms (improved insulin sensitivity and/or enhanced beta cell function) via which pioglitazone exerts its beneficial effect on glucose metabolism to prevent/delay onset of T2DM.Trial Registrationclinical trials.gov identifier: NCT00220961


American Journal of Physiology-endocrinology and Metabolism | 2008

Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo

Dawn K. Coletta; Bogdan Balas; Alberto O. Chavez; Muhammad R. Baig; Muhammad A. Abdul-Ghani; Sangeeta R. Kashyap; Franco Folli; Devjit Tripathy; Lawrence J. Mandarino; John E. Cornell; Ralph A. DeFronzo; Christopher P. Jenkinson

This study was undertaken to test the hypothesis that short-term exposure (4 h) to physiological hyperinsulinemia in normal, healthy subjects without a family history of diabetes would induce a low grade inflammatory response independently of glycemic status. Twelve normal glucose tolerant subjects received a 4-h euglycemic hyperinsulinemic clamp with biopsies of the vastus lateralis muscle. Microarray analysis identified 121 probe sets that were significantly altered in response to physiological hyperinsulinemia while maintaining euglycemia. In normal, healthy human subjects insulin increased the mRNAs of a number of inflammatory genes (CCL2, CXCL2 and THBD) and transcription factors (ATF3, BHLHB2, HES1, KLF10, JUNB, FOS, and FOSB). A number of other genes were upregulated in response to insulin, including RRAD, MT, and SGK. CITED2, a known coactivator of PPARalpha, was significantly downregulated. SGK and CITED2 are located at chromosome 6q23, where we previously detected strong linkage to fasting plasma insulin concentrations. We independently validated the mRNA expression changes in an additional five subjects and closely paralleled the results observed in the original 12 subjects. A saline infusion in healthy, normal glucose-tolerant subjects without family history of diabetes demonstrated that the genes altered during the euglycemic hyperinsulinemic clamp were due to hyperinsulinemia and were unrelated to the biopsy procedure per se. The results of the present study demonstrate that insulin acutely regulates the levels of mRNAs involved in inflammation and transcription and identifies several candidate genes, including HES1 and BHLHB2, for further investigation.

Collaboration


Dive into the Devjit Tripathy's collaboration.

Top Co-Authors

Avatar

Ralph A. DeFronzo

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Muhammad A. Abdul-Ghani

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Nicolas Musi

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Daniele

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Franco Folli

Health Science University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto O. Chavez

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Amalia Gastaldelli

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

George A. Bray

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge