Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Daniele is active.

Publication


Featured researches published by Giuseppe Daniele.


Journal of Clinical Investigation | 2014

Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production.

Aurora Merovci; Carolina Solis-Herrera; Giuseppe Daniele; Roy Eldor; Teresa Vanessa Fiorentino; Devjit Tripathy; Juan Xiong; Zandra Perez; Luke Norton; Muhammad A. Abdul-Ghani; Ralph A. DeFronzo

Chronic hyperglycemia impairs insulin action, resulting in glucotoxicity, which can be ameliorated in animal models by inducing glucosuria with renal glucose transport inhibitors. Here, we examined whether reduction of plasma glucose with a sodium-glucose cotransporter 2 (SGLT2) inhibitor could improve insulin-mediated tissue glucose disposal in patients with type 2 diabetes. Eighteen diabetic men were randomized to receive either dapagliflozin (n = 12) or placebo (n = 6) for 2 weeks. We measured insulin-mediated whole body glucose uptake and endogenous glucose production (EGP) at baseline and 2 weeks after treatment using the euglycemic hyperinsulinemic clamp technique. Dapagliflozin treatment induced glucosuria and markedly lowered fasting plasma glucose. Insulin-mediated tissue glucose disposal increased by approximately 18% after 2 weeks of dapagliflozin treatment, while placebo-treated subjects had no change in insulin sensitivity. Surprisingly, following dapagliflozin treatment, EGP increased substantially and was accompanied by an increase in fasting plasma glucagon concentration. Together, our data indicate that reduction of plasma glucose with an agent that works specifically on the kidney to induce glucosuria improves muscle insulin sensitivity. However, glucosuria induction following SGLT2 inhibition is associated with a paradoxical increase in EGP. These results provide support for the glucotoxicity hypothesis, which suggests that chronic hyperglycemia impairs insulin action in individuals with type 2 diabetes.


The Journal of Clinical Endocrinology and Metabolism | 2015

Dapagliflozin Lowers Plasma Glucose Concentration and Improves β-Cell Function

Aurora Merovci; Andrea Mari; Carolina Solis; Juan Xiong; Giuseppe Daniele; Alberto Chavez-Velazquez; Devjit Tripathy; Scheherezada Urban McCarthy; Muhammad A. Abdul-Ghani; Ralph A. DeFronzo

BACKGROUND β-Cell dysfunction is a core defect in T2DM, and chronic, sustained hyperglycemia has been implicated in progressive β-cell failure, ie, glucotoxicity. The aim of the present study was to examine the effect of lowering the plasma glucose concentration with dapagliflozin, a glucosuric agent, on β-cell function in T2DM individuals. RESEARCH DESIGN AND METHODS Twenty-four subjects with T2DM received dapagliflozin (n = 16) or placebo (n = 8) for 2 weeks, and a 75-g oral glucose tolerance test (OGTT) and insulin clamp were performed before and after treatment. Plasma glucose, insulin, and C-peptide concentrations were measured during the OGTT. RESULTS Dapagliflozin significantly lowered both the fasting and 2-hour plasma glucose concentrations and the incremental area under the plasma glucose concentration curve (ΔG0-120) during OGTT by -33 ± 5 mg/dL, -73 ± 9 mg/dL, and -60 ± 12 mg/dL · min, respectively, compared to -13 ± 9, -33 ± 13, and -18 ± 9 reductions in placebo-treated subjects (both P < .01). The incremental area under the plasma C-peptide concentration curve tended to increase in dapagliflozin-treated subjects, whereas it did not change in placebo-treated subjects. Thus, ΔC-Pep0-120/ΔG0-120 increased significantly in dapagliflozin-treated subjects, whereas it did not change in placebo-treated subjects (0.019 ± 0.005 vs 0.002 ± 0.006; P < .01). Dapagliflozin significantly improved whole-body insulin sensitivity (insulin clamp). Thus, β-cell function, measured as ΔC-Pep0-120/ ΔG0-120 ÷ insulin resistance, increased by 2-fold (P < .01) in dapagliflozin-treated vs placebo-treated subjects. CONCLUSION Lowering the plasma glucose concentration with dapagliflozin markedly improves β-cell function, providing strong support in man for the glucotoxic effect of hyperglycemia on β-cell function.


Diabetes Care | 2015

Sclerostin and Insulin Resistance in Prediabetes: Evidence of a Cross Talk Between Bone and Glucose Metabolism

Giuseppe Daniele; Deidre Winnier; Andrea Mari; Jan M. Bruder; Marcel Fourcaudot; Zuo Pengou; Devjit Tripathy; Christopher P. Jenkinson; Franco Folli

OBJECTIVE A gene mutation of the Wnt/β-catenin signaling cascade is present in rare patients with the insulin resistance syndrome. Sclerostin is a circulating peptide inhibiting Wnt/β-catenin signaling. Our aims were to evaluate serum sclerostin in subjects with prediabetes and to analyze its relationship with insulin resistance and β-cell function. RESEARCH DESIGN AND METHODS We performed a cross-sectional study including 43 healthy normal glucose-tolerant (NGT) individuals and 79 individuals with impaired glucose regulation (IGR), which included subjects with impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and combined IFG-IGT, undergoing oral glucose tolerance test (OGTT) and dual-energy X-ray absorptiometry. A subgroup of 18 with NGT and 30 with IGR also underwent a euglycemic–hyperinsulinemic clamp with tracer. RESULTS Sclerostin levels were higher in IGR compared with NGT (50.8 ± 2.4 vs. 38.7 ± 2.3 pmol/L; P = 0.01), positively correlated with HOMA-insulin resistance (IR) (r = 0.62; P < 0.001), and negatively correlated with insulin-mediated total body glucose disposal (r = −0.40; P < 0.001). Fasting endogenous glucose production (EGP) and hepatic and adipose tissue insulin resistance indexes were positively correlated with sclerostin levels (r = 0.48, r = 0.62, and r = 0.61, respectively; P < 0.001). Fasting and OGTT insulin clearance were inversely correlated with sclerostin serum levels (r = −0.52 and r = −0.44, respectively; both P < 0.001). Sclerostin levels were not correlated with β-cell function parameters. In multiple linear regression analysis, the addition of sclerostin levels to the traditional risk factors for insulin resistance improved the r2 associated with HOMA-IR (r2 change: 0.055; F change: 28.893; P = 0.001) and insulin-mediated total body glucose disposal (r2 change: 0.059; F change: 4.938; P = 0.033). CONCLUSIONS Sclerostin levels are increased in individuals with prediabetes and correlated with insulin resistance in skeletal muscle, liver, and adipose tissue. The correlation between sclerostin and insulin clearance at fasting state and during OGTT is novel; thus, studies are needed to explore the potential causal relationship.


Diabetes | 2014

Chronic reduction of plasma free fatty acid improves mitochondrial function and whole-body insulin sensitivity in obese and type 2 diabetic individuals.

Giuseppe Daniele; Roy Eldor; Aurora Merovci; Geoffrey D. Clarke; Juan Xiong; Devjit Tripathy; Anna Taranova; Muhammad A. Abdul-Ghani; Ralph A. DeFronzo

Insulin resistance and dysregulation of free fatty acid (FFA) metabolism are core defects in type 2 diabetic (T2DM) and obese normal glucose tolerant (NGT) individuals. Impaired muscle mitochondrial function (reduced ATP synthesis) also has been described in insulin-resistant T2DM and obese subjects. We examined whether reduction in plasma FFA concentration with acipimox improved ATP synthesis rate and altered reactive oxygen species (ROS) production. Eleven NGT obese and 11 T2DM subjects received 1) OGTT, 2) euglycemic insulin clamp with muscle biopsy, and 3) 1H-magnetic resonance spectroscopy of tibialis anterior muscle before and after acipimox (250 mg every 6 h for 12 days). ATP synthesis rate and ROS generation were measured in mitochondria isolated from muscle tissue ex vivo with chemoluminescence and fluorescence techniques, respectively. Acipimox 1) markedly reduced the fasting plasma FFA concentration and enhanced suppression of plasma FFA during oral glucose tolerance tests and insulin clamp in obese NGT and T2DM subjects and 2) enhanced insulin-mediated muscle glucose disposal and suppression of hepatic glucose production. The improvement in insulin sensitivity was closely correlated with the decrease in plasma FFA in obese NGT (r = 0.81) and T2DM (r = 0.76) subjects (both P < 0.001). Mitochondrial ATP synthesis rate increased by >50% in both obese NGT and T2DM subjects and was strongly correlated with the decrease in plasma FFA and increase in insulin-mediated glucose disposal (both r > 0.70, P < 0.001). Production of ROS did not change after acipimox. Reduction in plasma FFA in obese NGT and T2DM individuals improves mitochondrial ATP synthesis rate, indicating that the mitochondrial defect in insulin-resistant individuals is, at least in part, reversible.


Diabetes Care | 2009

Is There Evidence That Oral Hypoglycemic Agents Reduce Cardiovascular Morbidity/Mortality? Yes

Cristina Bianchi; Roberto Miccoli; Giuseppe Daniele; Giuseppe Penno; Stefano Del Prato

Athough type 2 diabetes is a heterogeneous condition encompassing multiple metabolic and vascular alterations, it can be easily described as a disease characterized by chronic hyperglycemia and increased cardiovascular (CV) risk. Hyperglycemia is the diagnostic criterion for diabetes, the target for antidiabetic therapy, and, together with A1C, the marker of glycemic control. Progressive worsening of glycemic control has been described in type 2 diabetic patients irrespective of initial form of treatment, leading the U.K. Prospective Diabetes Study (UKPDS) investigators to describe such changes as the “natural history” of the disease (1). Still, maintaining good glycemic control is crucial, since it is associated with marked reduction in the risk of developing retinopathy, nephropathy, and neuropathy in both type 1 (2) and type 2 diabetic patients (1). But it is CV disease that worsens long-term prognosis in type 2 diabetes (3), to the point that diabetes has been proposed as a CV risk equivalent owed to the observation that 10-year risk for major coronary events approximates the risk in CHD in patients without diabetes with previous CV events (4), increased case fatality rate after myocardial infarction, and worse overall prognosis after CHD (5). In diabetic patients, even after correction for known CV risk factors, the incidence of myocardial infarction or stroke is two- to threefold higher than in the nondiabetic population, with a twofold increase in risk of death (6), suggesting that some feature of diabetes must confer excessive propensity toward CV disease. Can this feature be hyperglycemia? No better issue can be chosen for debate. From an epidemiological point of view, there is evidence that the risk of CV mortality increases with the increase of plasma glucose concentrations (7) and A1C values (8). Moreover, multiple atherogenic mechanisms have been identified that can be activated by hyperglycemia (9). In spite of evident …


Diabetes Care | 2016

Dapagliflozin Enhances Fat Oxidation and Ketone Production in Patients With Type 2 Diabetes

Giuseppe Daniele; Juan Xiong; Carolina Solis-Herrera; Aurora Merovci; Roy Eldor; Devjit Tripathy; Ralph A. DeFronzo; Luke Norton; Muhammad A. Abdul-Ghani

OBJECTIVE Insulin resistance is associated with mitochondrial dysfunction and decreased ATP synthesis. Treatment of individuals with type 2 diabetes mellitus (T2DM) with sodium–glucose transporter 2 inhibitors (SGLT2i) improves insulin sensitivity. However, recent reports have demonstrated development of ketoacidosis in subjects with T2DM treated with SGLT2i. The current study examined the effect of improved insulin sensitivity with dapagliflozin on 1) mitochondrial ATP synthesis and 2) substrate oxidation rates and ketone production. RESEARCH DESIGN AND METHODS The study randomized 18 individuals with T2DM to dapagliflozin (n = 9) or placebo (n = 9). Before and after 2 weeks, subjects received an insulin clamp with tritiated glucose, indirect calorimetry, and muscle biopsies. RESULTS Dapagliflozin reduced fasting plasma glucose (167 ± 13 to 128 ± 6 mg/dL) and increased insulin-stimulated glucose disposal by 36% (P < 0.01). Glucose oxidation decreased (1.06 to 0.80 mg/kg ⋅ min, P < 0.05), whereas nonoxidative glucose disposal (glycogen synthesis) increased (2.74 to 4.74 mg/kg ⋅ min, P = 0.03). Dapagliflozin decreased basal glucose oxidation and increased lipid oxidation and plasma ketone concentration (0.05 to 0.19 mmol/L, P < 0.01) in association with an increase in fasting plasma glucagon (77 ± 8 to 94 ± 13, P < 0.01). Dapagliflozin reduced the ATP synthesis rate, which correlated with an increase in plasma ketone concentration. CONCLUSIONS Dapagliflozin improved insulin sensitivity and caused a shift from glucose to lipid oxidation, which, together with an increase in glucagon-to-insulin ratio, provide the metabolic basis for increased ketone production.


Thrombosis and Haemostasis | 2013

Ectopic fat: the true culprit linking obesity and cardiovascular disease?

Mariangela Morelli; M. Gaggini; Giuseppe Daniele; Paolo Marraccini; Rosa Sicari; Amalia Gastaldelli

Obesity is a major risk factor for cardiovascular disease and its complications. However, not all fat depots share the same characteristics. Recent studies have found that ectopic rather than subcutaneous fat accumulation is associated with increased cardiometabolic risk. However, ectopic fat accumulation can be seen initially as a protective mechanism against lipotoxicity. Subsequently the adipose tissue becomes dysfunctional, thus inducing systemic metabolic alterations (through release of cytokines) or specific organ dysfunctions. The purpose of this review is to summarise the current available data on the impact of excess adiposity vs ectopic fat in the development of cardio-metabolic diseases.


Diabetes | 2015

Exenatide Regulates Cerebral Glucose Metabolism in Brain Areas Associated with Glucose Homeostasis and Reward System

Giuseppe Daniele; Marjorie Molina-Carrion; Jack L. Lancaster; Demetrio Ciociaro; Eugenio Cersosimo; Devjit Tripathy; Curtis Triplitt; Peter T. Fox; Nicolas Musi; Ralph A. DeFronzo; Amalia Gastaldelli

Glucagon-like peptide 1 receptors (GLP-1Rs) have been found in the brain, but whether GLP-1R agonists (GLP-1RAs) influence brain glucose metabolism is currently unknown. The study aim was to evaluate the effects of a single injection of the GLP-1RA exenatide on cerebral and peripheral glucose metabolism in response to a glucose load. In 15 male subjects with HbA1c of 5.7 ± 0.1%, fasting glucose of 114 ± 3 mg/dL, and 2-h glucose of 177 ± 11 mg/dL, exenatide (5 μg) or placebo was injected in double-blind, randomized fashion subcutaneously 30 min before an oral glucose tolerance test (OGTT). The cerebral glucose metabolic rate (CMRglu) was measured by positron emission tomography after an injection of [18F]2-fluoro-2-deoxy-d-glucose before the OGTT, and the rate of glucose absorption (RaO) and disposal was assessed using stable isotope tracers. Exenatide reduced RaO0–60 min (4.6 ± 1.4 vs. 13.1 ± 1.7 μmol/min ⋅ kg) and decreased the rise in mean glucose0–60 min (107 ± 6 vs. 138 ± 8 mg/dL) and insulin0–60 min (17.3 ± 3.1 vs. 24.7 ± 3.8 mU/L). Exenatide increased CMRglu in areas of the brain related to glucose homeostasis, appetite, and food reward, despite lower plasma insulin concentrations, but reduced glucose uptake in the hypothalamus. Decreased RaO0–60 min after exenatide was inversely correlated to CMRglu. In conclusion, these results demonstrate, for the first time in man, a major effect of a GLP-1RA on regulation of brain glucose metabolism in the absorptive state.


Internal and Emergency Medicine | 2008

Optimizing management of metabolic syndrome to reduce risk: focus on life-style

Cristina Bianchi; Giuseppe Penno; Giuseppe Daniele; Luca Benzi; Stefano Del Prato; Roberto Miccoli

The prevalence of metabolic syndrome (MS) is increasing all over the world and its incidence is expected to rise in the next years. Although genetic predisposition appears to play an important role in the regulation of metabolic parameters and in particular of body weight, the rapid increase in the prevalence of obesity and MS suggests that ecological factors (social, economic, cultural and physical environment) are promoting those conditions in susceptible individuals. People with MS are at increased risk of type 2 diabetes and cardiovascular disease and therefore they represent a priority target for preventive strategies. Life-style modifications based on healthy diet and increased physical activity are an effective preventing and therapeutic approach. Unfortunately, implementation of life-style modification and maintenance of effects is a difficult task both at personal and social level, thus drug therapy can be taken into account.


Diabetic Medicine | 2008

The metabolic syndrome is related to albuminuria in Type 2 diabetes

Cristina Bianchi; Giuseppe Penno; Giuseppe Daniele; Eleonora Russo; M. G. Giovannitti; S. Del Prato; Roberto Miccoli

Aims  To determine the relationships between metabolic syndrome (MetS), diabetic nephropathy (DN) and renal function in Type 2 diabetes.

Collaboration


Dive into the Giuseppe Daniele's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph A. DeFronzo

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devjit Tripathy

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Muhammad A. Abdul-Ghani

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amalia Gastaldelli

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge