Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Devon Kavanaugh is active.

Publication


Featured researches published by Devon Kavanaugh.


Frontiers in Genetics | 2015

Mucin glycan foraging in the human gut microbiome

Louise E. Tailford; Emmanuelle H. Crost; Devon Kavanaugh; Nathalie Juge

The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These core structures are further elongated and frequently modified by fucose and sialic acid sugar residues via α1,2/3/4 and α2,3/6 linkages, respectively. The ability to metabolize these mucin O-linked oligosaccharides is likely to be a key factor in determining which bacterial species colonize the mucosal surface. Due to their proximity to the immune system, mucin-degrading bacteria are in a prime location to influence the host response. However, despite the growing number of bacterial genome sequences available from mucin degraders, our knowledge on the structural requirements for mucin degradation by gut bacteria remains fragmented. This is largely due to the limited number of functionally characterized enzymes and the lack of studies correlating the specificity of these enzymes with the ability of the strain to degrade and utilize mucin and mucin glycans. This review focuses on recent findings unraveling the molecular strategies used by mucin-degrading bacteria to utilize host glycans, adapt to the mucosal environment, and influence human health.


PLOS ONE | 2013

Exposure of Bifidobacterium longum subsp. infantis to Milk Oligosaccharides Increases Adhesion to Epithelial Cells and Induces a Substantial Transcriptional Response

Devon Kavanaugh; John O'Callaghan; Ludovica F. Buttó; Helen Slattery; Jonathan A. Lane; Marguerite Clyne; Marian Kane; Lokesh Joshi; Rita M. Hickey

In this study, we tested the hypothesis that milk oligosaccharides may contribute not only to selective growth of bifidobacteria, but also to their specific adhesive ability. Human milk oligosaccharides (3′sialyllactose and 6′sialyllactose) and a commercial prebiotic (Beneo Orafti P95; oligofructose) were assayed for their ability to promote adhesion of Bifidobacterium longum subsp. infantis ATCC 15697 to HT-29 and Caco-2 human intestinal cells. Treatment with the commercial prebiotic or 3′sialyllactose did not enhance adhesion. However, treatment with 6′sialyllactose resulted in increased adhesion (4.7 fold), while treatment with a mixture of 3′- and 6′-sialyllactose substantially increased adhesion (9.8 fold) to HT-29 intestinal cells. Microarray analyses were subsequently employed to investigate the transcriptional response of B. longum subsp. infantis to the different oligosaccharide treatments. This data correlated strongly with the observed changes in adhesion to HT-29 cells. The combination of 3′- and 6′-sialyllactose resulted in the greatest response at the genetic level (both in diversity and magnitude) followed by 6′sialyllactose, and 3′sialyllactose alone. The microarray data was further validated by means of real-time PCR. The current findings suggest that the increased adherence phenotype of Bifidobacterium longum subsp. infantis resulting from exposure to milk oligosaccharides is multi-faceted, involving transcription factors, chaperone proteins, adhesion-related proteins, and a glycoside hydrolase. This study gives additional insight into the role of milk oligosaccharides within the human intestine and the molecular mechanisms underpinning host-microbe interactions.


International Journal of Food Microbiology | 2012

Anti-infective bovine colostrum oligosaccharides: Campylobacter jejuni as a case study

Jonathan A. Lane; Karina Mariño; Julie Naughton; Devon Kavanaugh; Marguerite Clyne; Stephen D. Carrington; Rita M. Hickey

Campylobacter jejuni is the leading cause of acute bacterial infectious diarrhea in humans. Unlike in humans, C. jejuni is a commensal within the avian host. Heavily colonized chickens often fail to display intestinal disease, and no cellular attachment or invasion has been demonstrated in-vivo. Recently, researchers have shown that the reason for the attenuation of C. jejuni virulence may be attributed to the presence of chicken intestinal mucus and more specifically chicken mucin. Since mucins are heavily glycosylated molecules this observation would suggest that glycan-based compounds may act as anti-infectives against C. jejuni. Considering this, we have investigated naturally sourced foods for potential anti-infective glycans. Bovine colostrum rich in neutral and acidic oligosaccharides has been identified as a potential source of anti-infective glycans. In this study, we tested oligosaccharides isolated and purified from the colostrum of Holstein Friesian cows for anti-infective activity against a highly invasive strain of C. jejuni. During our initial studies we structurally defined 37 bovine colostrum oligosaccharides (BCO) by HILIC-HPLC coupled with exoglycosidase digests and off-line mass spectroscopy, and demonstrated the ability of C. jejuni to bind to some of these structures, in-vitro. We also examined the effect of BCO on C. jejuni adhesion to, invasion of and translocation of HT-29 cells. BCO dramatically reduced the cellular invasion and translocation of C. jejuni, in a concentration dependent manner. Periodate treatment of the BCO prior to inhibition studies resulted in a loss of the anti-infective activity of the glycans suggesting a direct oligosaccharide-bacterial interaction. This was confirmed when the BCO completely prevented C. jejuni binding to chicken intestinal mucin, in-vitro. This study builds a strong case for the inclusion of oligosaccharides sourced from cows milk in functional foods. However, it is only through further understanding the structure and function of milk oligosaccharides that such compounds can reach their potential as food ingredients.


Nutrition Reviews | 2015

The intestinal glycome and its modulation by diet and nutrition.

Devon Kavanaugh; John O’Callaghan; Michelle Kilcoyne; Marian Kane; Lokesh Joshi; Rita M. Hickey

The human gastrointestinal epithelium is responsible for adequate digestion and absorption of nutrients. It is an immunological interface and highly selective environment that facilitates colonization by commensal bacteria and prohibits adhesion and invasion of pathogenic agents. The epithelial barrier is reinforced by the intestinal glycome, which consists of the vast array of sugar structures and glycoconjugates expressed by cells of the gastrointestinal tract. Aberrant glycosylation is associated with altered responses to enteric infections as well as immune dysregulation. Intestinal glycosylation is susceptible to alteration by genetic, physiological, and pathological states, in addition to modification by nutritional and environmental stimuli. The effects of nutritional influences upon glycan assembly and topology are of particular importance in intestinal barrier reinforcement and homeostasis. For instance, milk contains factors that can alter intestinal glycosylation, which in turn contributes to early immune development and maturation of the newborn intestinal tract. This review focuses on the glycosylation status of intestinal cells and the means by which nutritional factors modulate the expression and presentation of intestinal glycans.


International Journal of Molecular Sciences | 2016

Use of Atomic Force Microscopy to Study the Multi-Modular Interaction of Bacterial Adhesins to Mucins

A.P Gunning; Devon Kavanaugh; Elizabeth Thursby; Sabrina Etzold; Donald A. MacKenzie; Nathalie Juge

The mucus layer covering the gastrointestinal (GI) epithelium is critical in selecting and maintaining homeostatic interactions with our gut bacteria. However, the molecular details of these interactions are not well understood. Here, we provide mechanistic insights into the adhesion properties of the canonical mucus-binding protein (MUB), a large multi-repeat cell–surface adhesin found in Lactobacillus inhabiting the GI tract. We used atomic force microscopy to unravel the mechanism driving MUB-mediated adhesion to mucins. Using single-molecule force spectroscopy we showed that MUB displayed remarkable adhesive properties favouring a nanospring-like adhesion model between MUB and mucin mediated by unfolding of the multiple repeats constituting the adhesin. We obtained direct evidence for MUB self-interaction; MUB–MUB followed a similar binding pattern, confirming that MUB modular structure mediated such mechanism. This was in marked contrast with the mucin adhesion behaviour presented by Galectin-3 (Gal-3), a mammalian lectin characterised by a single carbohydrate binding domain (CRD). The binding mechanisms reported here perfectly match the particular structural organization of MUB, which maximizes interactions with the mucin glycan receptors through its long and linear multi-repeat structure, potentiating the retention of bacteria within the outer mucus layer.


Frontiers in Microbiology | 2017

Lactobacillus reuteri Surface Mucus Adhesins Upregulate Inflammatory Responses Through Interactions With Innate C-Type Lectin Receptors

Krisztian Bene; Devon Kavanaugh; Charlotte Leclaire; Allan P. Gunning; Donald A. MacKenzie; Alexandra Wittmann; Ian D. Young; Norihito Kawasaki; Éva Rajnavölgyi; Nathalie Juge

The vertebrate gut symbiont Lactobacillus reuteri exhibits strain-specific adhesion and health-promoting properties. Here, we investigated the role of the mucus adhesins, CmbA and MUB, upon interaction of L. reuteri ATCC PTA 6475 and ATCC 53608 strains with human monocyte-derived dendritic cells (moDCs). We showed that mucus adhesins increased the capacity of L. reuteri strains to interact with moDCs and promoted phagocytosis. Our data also indicated that mucus adhesins mediate anti- and pro-inflammatory effects by the induction of interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), IL-1β, IL-6, and IL-12 cytokines. L. reuteri ATCC PTA 6475 and ATCC 53608 were exclusively able to induce moDC-mediated Th1 and Th17 immune responses. We further showed that purified MUB activates moDCs and induces Th1 polarized immune responses associated with increased IFNγ production. MUB appeared to mediate these effects via binding to C-type lectin receptors (CLRs), as shown using cell reporter assays. Blocking moDCs with antibodies against DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) or Dectin-2 did not affect the uptake of the MUB-expressing strain, but reduced the production of TNF-α and IL-6 by moDCs significantly, in line with the Th1 polarizing capacity of moDCs. The direct interaction between MUB and CLRs was further confirmed by atomic force spectroscopy. Taken together these data suggest that mucus adhesins expressed at the cell surface of L. reuteri strains may exert immunoregulatory effects in the gut through modulating the Th1-promoting capacity of DCs upon interaction with C-type lectins.


Applied and Environmental Microbiology | 2013

Detection of Galectin-3 Interaction with Commensal Bacteria

Devon Kavanaugh; Marian Kane; Lokesh Joshi; Rita M. Hickey

ABSTRACT A panel of commensal bacteria was screened for the ability to interact with galectin-3. Two strains of Bifidobacterium longum subsp. infantis interacted to a greater extent than did the pathogenic positive control, Escherichia coli NCTC 12900. Further validation of the interaction was achieved by using agglutination and solid-phase binding assays.


Cellular Microbiology | 2017

The StcE metalloprotease of enterohaemorrhagic Escherichia coli reduces the inner mucus layer and promotes adherence to human colonic epithelium ex vivo

Claire L. Hews; Seav-Ly Tran; Udo Wegmann; Bernard Brett; Alistair D. S. Walsham; Devon Kavanaugh; Nicole J. Ward; Nathalie Juge; Stephanie Schüller

Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen and tightly adheres to human colonic epithelium by forming attaching/effacing lesions. To reach the epithelial surface, EHEC must penetrate the thick mucus layer protecting the colonic epithelium. In this study, we investigated how EHEC interacts with the intestinal mucus layer using mucin‐producing LS174T colon carcinoma cells and human colonic mucosal biopsies. The level of EHEC binding and attaching/effacing lesion formation in LS174T cells was higher compared to mucin‐deficient colon carcinoma cell lines, and initial adherence was independent of the presence of flagellin, Escherichia coli common pilus, or long polar fimbriae. Although EHEC infection did not affect gene expression of secreted mucins, it resulted in reduced MUC2 glycoprotein levels. This effect was dependent on the catalytic activity of the secreted metalloprotease StcE, which reduced the inner mucus layer and thereby promoted EHEC access and binding to the epithelium in vitro and ex vivo. Given the lack of efficient therapies against EHEC infection, StcE may represent a suitable target for future treatment and prevention strategies.


Journal of Clinical Gastroenterology | 2016

The Role of Oligosaccharides in Host-Microbial Interactions for Human Health.

Sarah A. Ross; Jonathan A. Lane; Mariarosaria Marotta; Devon Kavanaugh; Joseph Thomas Ryan; Lokesh Joshi; Rita M. Hickey

Milk oligosaccharides have many associated bioactivities which can contribute to human health and offer protective properties to the host. Such bioactivities include anti-infective properties whereby oligosaccharides interact with bacterial cells and prevent adhesion to the host and subsequent colonization. Milk oligosaccharides have also been shown to alter the glycosylation of intestinal cells, leading to a reduction in pathogenic colonization. In addition, these sugars promote adhesion of commensal bacterial strains to host cells as well as possessing the ability to alter mucin expression in intestinal cells and improve barrier function. The ability of milk oligosaccharides to alter the transcriptome of both commensal bacterial strains and intestinal epithelial cells has also been revealed, indicating the potential of many cell types to detect the presence of milk oligosaccharides and respond accordingly at the genetic level. Interestingly, domestic animal milk may provide a bioactive source of oligosaccharides for formula supplementation with the aim of emulating the gold standard that is human milk. Overall, this review highlights the ability of milk oligosaccharides to promote health in a variety of ways, for example, through direct bacterial interactions, immunomodulatory activities, promotion of gut barrier function, and induction of protective transcriptional responses.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Structural basis for the role of serine-rich repeat proteins from Lactobacillus reuteri in gut microbe–host interactions

Saannya Sequeira; Devon Kavanaugh; Donald A. MacKenzie; Tanja Šuligoj; Samuel Walpole; Charlotte Leclaire; A.P Gunning; Dimitrios Latousakis; William G. T. Willats; Jesús Angulo; Changjiang Dong; Nathalie Juge

Significance Gut bacteria play a key role in health and disease, but the molecular mechanisms underpinning their interaction with the host remain elusive. The serine-rich repeat proteins (SRRPs) are a family of adhesins identified in many Gram-positive pathogenic bacteria. We previously showed that beneficial bacterial species found in the gut also express SRRPs and that SRRP was required for the ability of Lactobacillus reuteri strain to colonize mice. Here, our structural and biochemical data reveal that L. reuteri SRRP adopts a β-solenoid fold not observed in other structurally characterized SRRPs and functions as an adhesin via a pH-dependent mechanism, providing structural insights into the role of these adhesins in biofilm formation of gut symbionts. Lactobacillus reuteri, a Gram-positive bacterial species inhabiting the gastrointestinal tract of vertebrates, displays remarkable host adaptation. Previous mutational analyses of rodent strain L. reuteri 100-23C identified a gene encoding a predicted surface-exposed serine-rich repeat protein (SRRP100-23) that was vital for L. reuteri biofilm formation in mice. SRRPs have emerged as an important group of surface proteins on many pathogens, but no structural information is available in commensal bacteria. Here we report the 2.00-Å and 1.92-Å crystal structures of the binding regions (BRs) of SRRP100-23 and SRRP53608 from L. reuteri ATCC 53608, revealing a unique β-solenoid fold in this important adhesin family. SRRP53608-BR bound to host epithelial cells and DNA at neutral pH and recognized polygalacturonic acid (PGA), rhamnogalacturonan I, or chondroitin sulfate A at acidic pH. Mutagenesis confirmed the role of the BR putative binding site in the interaction of SRRP53608-BR with PGA. Long molecular dynamics simulations showed that SRRP53608-BR undergoes a pH-dependent conformational change. Together, these findings provide mechanistic insights into the role of SRRPs in host–microbe interactions and open avenues of research into the use of biofilm-forming probiotics against clinically important pathogens.

Collaboration


Dive into the Devon Kavanaugh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lokesh Joshi

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marian Kane

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Changjiang Dong

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesús Angulo

University of East Anglia

View shared research outputs
Researchain Logo
Decentralizing Knowledge