Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Devyani Deshpande is active.

Publication


Featured researches published by Devyani Deshpande.


Antimicrobial Agents and Chemotherapy | 2012

The Antibiotic-Resistance Arrow of Time: Efflux Pump Induction is a General First Step in the Evolution of Mycobacterial Drug-Resistance

Aurelia Schmalstieg; Shashikant Srivastava; Serkan Belkaya; Devyani Deshpande; Claudia Meek; Richard Leff; Nicolai S. C. van Oers; Tawanda Gumbo

ABSTRACT We hypothesize that low-level efflux pump expression is the first step in the development of high-level drug resistance in mycobacteria. We performed 28-day azithromycin dose-effect and dose-scheduling studies in our hollow-fiber model of disseminated Mycobacterium avium-M. intracellulare complex. Both microbial kill and resistance emergence were most closely linked to the within-macrophage area under the concentration-time curve (AUC)/MIC ratio. Quantitative PCR revealed that subtherapeutic azithromycin exposures over 3 days led to a 56-fold increase in expression of MAV_3306, which encodes a putative ABC transporter, and MAV_1406, which encodes a putative major facilitator superfamily pump, in M. avium. By day 7, a subpopulation of M. avium with low-level resistance was encountered and exhibited the classic inverted U curve versus AUC/MIC ratios. The resistance was abolished by an efflux pump inhibitor. While the maximal microbial kill started to decrease after day 7, a population with high-level azithromycin resistance appeared at day 28. This resistance could not be reversed by efflux pump inhibitors. Orthologs of pumps encoded by MAV_3306 and MAV_1406 were identified in Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium marinum, Mycobacterium abscessus, and Mycobacterium ulcerans. All had highly conserved protein secondary structures. We propose that induction of several efflux pumps is the first step in a general pathway to drug resistance that eventually leads to high-level chromosomal-mutation-related resistance in mycobacteria as ordered events in an “antibiotic resistance arrow of time.”


Clinical Infectious Diseases | 2016

Drug Concentration Thresholds Predictive of Therapy Failure and Death in Children With Tuberculosis: Bread Crumb Trails in Random Forests

Soumya Swaminathan; Jotam G. Pasipanodya; A. K. Hemanth Kumar; Shashikant Srivastava; Devyani Deshpande; Eric L. Nuermberger; Tawanda Gumbo

Background. The role of drug concentrations in clinical outcomes in children with tuberculosis is unclear. Target concentrations for dose optimization are unknown. Methods. Plasma drug concentrations measured in Indian children with tuberculosis were modeled using compartmental pharmacokinetic analyses. The children were followed until end of therapy to ascertain therapy failure or death. An ensemble of artificial intelligence algorithms, including random forests, was used to identify predictors of clinical outcome from among 30 clinical, laboratory, and pharmacokinetic variables. Results. Among the 143 children with known outcomes, there was high between-child variability of isoniazid, rifampin, and pyrazinamide concentrations: 110 (77%) completed therapy, 24 (17%) failed therapy, and 9 (6%) died. The main predictors of therapy failure or death were a pyrazinamide peak concentration <38.10 mg/L and rifampin peak concentration <3.01 mg/L. The relative risk of these poor outcomes below these peak concentration thresholds was 3.64 (95% confidence interval [CI], 2.28–5.83). Isoniazid had concentration-dependent antagonism with rifampin and pyrazinamide, with an adjusted odds ratio for therapy failure of 3.00 (95% CI, 2.08–4.33) in antagonism concentration range. In regard to death alone as an outcome, the same drug concentrations, plus z scores (indicators of malnutrition), and age <3 years, were highly ranked predictors. In children <3 years old, isoniazid 0- to 24-hour area under the concentration-time curve <11.95 mg/L × hour and/or rifampin peak <3.10 mg/L were the best predictors of therapy failure, with relative risk of 3.43 (95% CI, .99–11.82). Conclusions. We have identified new antibiotic target concentrations, which are potential biomarkers associated with treatment failure and death in children with tuberculosis.


Antimicrobial Agents and Chemotherapy | 2010

Ethambutol Optimal Clinical Dose and Susceptibility Breakpoint Identification by Use of a Novel Pharmacokinetic-Pharmacodynamic Model of Disseminated Intracellular Mycobacterium avium

Devyani Deshpande; Shashikant Srivastava; Claudia Meek; Richard Leff; Tawanda Gumbo

ABSTRACT Ethambutol, together with a macrolide, is the backbone for treatment of disseminated Mycobacterium avium disease. However, at the standard dose of 15 mg/kg of body weight/day, ethambutol efficacy is limited. In addition, susceptibility breakpoints have consistently failed to predict clinical outcome. We performed dose-effect studies with extracellular M. avium as well as with bacilli within human macrophages. The maximal kill rate (Emax) for ethambutol against extracellular bacilli was 5.54 log10 CFU/ml, compared to 0.67 log10 CFU/ml for intracellular M. avium, after 7 days of exposure. Thus, extracellular assays demonstrated high efficacy. We created a hollow-fiber system model of intracellular M. avium and performed microbial pharmacokinetic-pharmacodynamic studies using pharmacokinetics similar to those of ethambutol for humans. The Emax in the systems was 0.79 log10 CFU/ml with 7 days of daily therapy, so the kill rates approximated those encountered in patients treated with ethambutol monotherapy. Ratio of peak concentration to MIC (Cmax/MIC) was linked to microbial kill rate. The Cmax/MIC ratio needed to achieve the 90% effective concentration (EC90) in serum was 1.23, with a calculated intramacrophage Cmax/MIC ratio of 13. In 10,000 patient Monte Carlo simulations, doses of 15, 50, and 75 mg/kg achieved the EC90 in 35.50%, 76.81%, and 86.12% of patients, respectively. Therefore, ethambutol doses of ≥50 mg/kg twice a week would be predicted to be better than current doses of 15 mg/kg for treatment of disseminated M. avium disease. New susceptibility breakpoints and critical concentrations of 1 to 2 mg/liter were identified for the determination of ethambutol-resistant M. avium in Middlebrook broth. Given that the modal MIC of clinical isolates is around 2 mg/liter, most isolates should be considered ethambutol resistant.


Antimicrobial Agents and Chemotherapy | 2010

Moxifloxacin Pharmacokinetics/Pharmacodynamics and Optimal Dose and Susceptibility Breakpoint Identification for Treatment of Disseminated Mycobacterium avium Infection

Devyani Deshpande; Shashikant Srivastava; Claudia Meek; Richard Leff; Gerri S. Hall; Tawanda Gumbo

ABSTRACT Organisms of the Mycobacterium avium-intracellulare complex (MAC) have been demonstrated to be susceptible to moxifloxacin. However, clinical data on how to utilize moxifloxacin to treat disseminated MAC are scanty. In addition, there have been no moxifloxacin pharmacokinetic-pharmacodynamic (PK/PD) studies performed for MAC infection. We utilized an in vitro PK/PD model of intracellular MAC to study moxifloxacin PK/PD for disseminated disease. Moxifloxacin doses, based on a serum half-life of 12 h, were administered, and the 0- to 24-h area under the concentration-time curve (AUC0-24) to MIC ratios associated with 1.0 log10 CFU/ml per week kill and 90% of maximal kill (EC90) were identified. The AUC0-24/MIC ratio associated with 1.0 log10 CFU/ml kill was 17.12, and that with EC90 was 391.56 (r2 = 0.97). Next, the moxifloxacin MIC distribution in 102 clinical isolates of MAC was identified. The median MIC was 1 to 2 mg/liter. Monte Carlo simulations of 10,000 patients with disseminated MAC were performed to determine the probability that daily moxifloxacin doses of 400 and 800 mg/day would achieve or exceed 1.0 log10 CFU/ml per week kill or EC90. Doses of 400 and 800 mg/day achieved the AUC0-24/MIC ratio of 17.12 in 64% and 92% of patients, respectively. The critical concentration of moxifloxacin against MAC was identified as 0.25 mg/liter in Middlebrook media. The proposed susceptibility breakpoint means that a larger proportion of clinical isolates is resistant to moxifloxacin prior to therapy. For patients infected with susceptible isolates, however, 800 mg a day should be examined for safety and efficacy for disseminated M. avium disease.


EBioMedicine | 2016

A Long-term Co-perfused Disseminated Tuberculosis-3D Liver Hollow Fiber Model for Both Drug Efficacy and Hepatotoxicity in Babies

Shashikant Srivastava; Jotam G. Pasipanodya; Devyani Deshpande; Stephen Shuford; Howland E. Crosswell; Kayle N. Cirrincione; Carleton Sherman; Soumya Swaminathan; Tawanda Gumbo

Treatment of disseminated tuberculosis in children ≤ 6 years has not been optimized. The pyrazinamide-containing combination regimen used to treat disseminated tuberculosis in babies and toddlers was extrapolated from adult pulmonary tuberculosis. Due to hepatotoxicity worries, there are no dose–response studies in children. We designed a hollow fiber system model of disseminated intracellular tuberculosis with co-perfused three-dimensional organotypic liver modules to simultaneously test for efficacy and toxicity. We utilized pediatric pharmacokinetics of pyrazinamide and acetaminophen to determine dose-dependent pyrazinamide efficacy and hepatotoxicity. Acetaminophen concentrations that cause hepatotoxicity in children led to elevated liver function tests, while 100 mg/kg pyrazinamide did not. Surprisingly, pyrazinamide did not kill intracellular Mycobacterium tuberculosis up to fourfold the standard dose as monotherapy or as combination therapy, despite achieving high intracellular concentrations. Host-pathogen RNA-sequencing revealed lack of a pyrazinamide exposure transcript signature in intracellular bacteria or of phagolysosome acidification on pH imaging. Artificial intelligence algorithms confirmed that pyrazinamide was not predictive of good clinical outcomes in children ≤ 6 years who had extrapulmonary tuberculosis. Thus, adding a drug that works inside macrophages could benefit children with disseminated tuberculosis. Our in vitro model can be used to identify such new regimens that could accelerate cure while minimizing toxicity.


Clinical Infectious Diseases | 2016

Optimal Clinical Doses of Faropenem, Linezolid, and Moxifloxacin in Children With Disseminated Tuberculosis: Goldilocks

Shashikant Srivastava; Devyani Deshpande; Jotam G. Pasipanodya; Eric L. Nuermberger; Soumya Swaminathan; Tawanda Gumbo

Background. When treated with the same antibiotic dose, children achieve different 0- to 24-hour area under the concentration-time curves (AUC0–24) because of maturation and between-child physiological variability on drug clearance. Children are also infected by Mycobacterium tuberculosis isolates with different antibiotic minimum inhibitory concentrations (MICs). Thus, each child will achieve different AUC0–24/MIC ratios when treated with the same dose. Methods. We used 10 000-subject Monte Carlo experiments to identify the oral doses of linezolid, moxifloxacin, and faropenem that would achieve optimal target exposures associated with optimal efficacy in children with disseminated tuberculosis. The linezolid and moxifloxacin exposure targets were AUC0–24/MIC ratios of 62 and 122, and a faropenem percentage of time above MIC >60%, in combination therapy. A linezolid AUC0–24 of 93.4 mg × hour/L was target for toxicity. Population pharmacokinetic parameters of each drug and between-child variability, as well as MIC distribution, were used, and the cumulative fraction of response (CFR) was calculated. We also considered drug penetration indices into meninges, bone, and peritoneum. Results. The linezolid dose of 15 mg/kg in full-term neonates and infants aged up to 3 months and 10 mg/kg in toddlers, administered once daily, achieved CFR ≥ 90%, with <10% achieving linezolid AUC0–24 associated with toxicity. The moxifloxacin dose of 25 mg/kg/day achieved a CFR > 90% in infants, but the optimal dose was 20 mg/kg/day in older children. The faropenem medoxomil optimal dosage was 30 mg/kg 3–4 times daily. Conclusions. The regimen and doses of linezolid, moxifloxacin, and faropenem identified are proposed to be adequate for all disseminated tuberculosis syndromes, whether drug-resistant or -susceptible.


Clinical Infectious Diseases | 2016

Concentration-Dependent Synergy and Antagonism of Linezolid and Moxifloxacin in the Treatment of Childhood Tuberculosis: The Dynamic Duo

Devyani Deshpande; Shashikant Srivastava; Eric L. Nuermberger; Jotam G. Pasipanodya; Soumya Swaminathan; Tawanda Gumbo

Background. No treatment regimens have been specifically designed for children, in whom tuberculosis is predominantly intracellular. Given their activity as monotherapy and their ability to penetrate many diseased anatomic sites that characterize disseminated tuberculosis, linezolid and moxifloxacin could be combined to form a regimen for this need. Methods. We examined microbial kill of intracellular Mycobacterium tuberculosis (Mtb) by the combination of linezolid and moxifloxacin multiple exposures in a 7-by-7 mathematical matrix. We then used the hollow fiber system (HFS) model of intracellular tuberculosis to identify optimal dose schedules and exposures of moxifloxacin and linezolid in combination. We mimicked pediatric half-lives and concentrations achieved by each drug. We sampled the peripheral compartment on days 0, 7, 14, 21, and 28 for Mtb quantification, and compared the slope of microbial kill of Mtb by these regimens to the standard regimen of isoniazid, rifampin, and pyrazinamide, based on exponential decline regression. Results. The full exposure-response surface identified linezolid-moxifloxacin zones of synergy, antagonism, and additivity. A regimen based on each of these zones was then used in the HFS model, with observed half-lives of 4.08 ± 0.66 for linezolid and 3.80 ± 1.34 hours for moxifloxacin. The kill rate constant was 0.060 ± 0.012 per day with the moxifloxacin-linezolid regimen in the additivity zone vs 0.083 ± 0.011 per day with standard therapy, translating to a bacterial burden half-life of 11.52 days vs 8.53 days, respectively. Conclusions. We identified doses and dose schedules of a linezolid and moxifloxacin backbone regimen that could be highly efficacious in disseminated tuberculosis in children.


Antimicrobial Agents and Chemotherapy | 2016

Amikacin Pharmacokinetics/Pharmacodynamics in a Novel Hollow-Fiber Mycobacterium abscessus Disease Model

Beatriz E. Ferro; Shashikant Srivastava; Devyani Deshpande; Carleton Sherman; Jotam G. Pasipanodya; Dick van Soolingen; Johan W. Mouton; Jakko van Ingen; Tawanda Gumbo

ABSTRACT The treatment of pulmonary Mycobacterium abscessus disease is associated with very high failure rates and easily acquired drug resistance. Amikacin is the key drug in treatment regimens, but the optimal doses are unknown. No good preclinical model exists to perform formal pharmacokinetics/pharmacodynamics experiments to determine these optimal doses. We developed a hollow-fiber system model of M. abscessus disease and studied amikacin exposure effects and dose scheduling. We mimicked amikacin human pulmonary pharmacokinetics. Both amikacin microbial kill and acquired drug resistance were linked to the peak concentration-to-MIC ratios; the peak/MIC ratio associated with 80% of maximal kill (EC80) was 3.20. However, on the day of the most extensive microbial kill, the bacillary burden did not fall below the starting inoculum. We performed Monte Carlo simulations of 10,000 patients with pulmonary M. abscessus infection and examined the probability that patients treated with one of 6 doses from 750 mg to 4,000 mg would achieve or exceed the EC80. We also examined these doses for the ability to achieve a cumulative area under the concentration-time curve of 82,232 mg · h/liter × days, which is associated with ototoxicity. The standard amikacin doses of 750 to 1,500 mg a day achieved the EC80 in ≤21% of the patients, while a dose of 4 g/day achieved this in 70% of the patients but at the cost of high rates of ototoxicity within a month or two. The susceptibility breakpoint was an MIC of 8 to 16 mg/liter. Thus, amikacin, as currently dosed, has limited efficacy against M. abscessus. It is urgent that different antibiotics be tested using our preclinical model and new regimens developed.


Clinical Infectious Diseases | 2016

A Faropenem, Linezolid, and Moxifloxacin Regimen for Both Drug-Susceptible and Multidrug-Resistant Tuberculosis in Children: FLAME Path on the Milky Way

Devyani Deshpande; Shashikant Srivastava; Eric L. Nuermberger; Jotam G. Pasipanodya; Soumya Swaminathan; Tawanda Gumbo

Background. The regimen of linezolid and moxifloxacin was found to be efficacious in the hollow fiber system model of pediatric intracellular tuberculosis. However, its kill rate was slower than the standard 3-drug regimen of isoniazid, rifampin, and pyrazinamide. We wanted to examine the effect of adding a third oral agent, faropenem, to this dual combination. Methods. We performed a series of studies in the hollow fiber system model of intracellular Mycobacterium tuberculosis, by mimicking pediatric pharmacokinetics of each antibiotic. First, we varied the percentage of time that faropenem persisted above minimum inhibitory concentration (TMIC) on the moxifloxacin-linezolid regimen. After choosing the best faropenem exposure, we performed experiments in which we varied the moxifloxacin and linezolid doses in the triple regimen. Finally, we performed longer-duration therapy validation experiments. Bacterial burden was quantified using both colony-forming units per milliliter (CFU/mL) and time to positivity (TTP). Kill slopes were modeled using exponential regression. Results. TTP was a more sensitive measure of bacterial burden than CFU/mL. A faropenem TMIC > 62% was associated with steepest microbial kill slope. Regimens of standard linezolid and moxifloxacin plus faropenem TMIC > 60%, as well as higher-dose moxifloxacin, achieved slopes equivalent to those of the standard regimen based by both TTP and CFU/mL over 28 days of treatment. Conclusions. We have developed an oral faropenem-linezolid-moxifloxacin (FLAME) regimen that is free of first-line drugs. The regimen could be effective against both multidrug-resistant and drug-susceptible tuberculosis in children.


Clinical Infectious Diseases | 2016

Linezolid for Infants and Toddlers With Disseminated Tuberculosis: First Steps

Devyani Deshpande; Shashikant Srivastava; Jotam G. Pasipanodya; Stephen J. Bush; Eric L. Nuermberger; Soumya Swaminathan; Tawanda Gumbo

Background. Infants and toddlers often present with disseminated and lymph node tuberculosis, in which Mycobacterium tuberculosis (Mtb) is predominantly intracellular. Linezolid, used to treat tuberculosis in adults, has not been formally studied in infants. Infants clear linezolid 5 times faster than adults and achieve lower 0- to 24-hour area under the concentration-time curves (AUC0–24). Methods. To mimic intracellular disease, we infected human-derived THP-1 macrophages with Mtb and inoculated hollow fiber systems. We performed dose-effect and dose-scheduling studies in which we recapitulated the linezolid half-life of 3 hours encountered in infants. Repetitive sampling for linezolid pharmacokinetics, Mtb intracellular burden, viable monocyte count, and RNA sequencing reads were performed up to 28 days. Results. The linezolid extracellular half-life was 2.64 ± 0.38 hours, whereas intracellular half-life was 8.93 ± 1.30 hours (r2 = 0.89). Linezolid efficacy was linked to the AUC0–24 to minimum inhibitory concentration (MIC) ratio (r2 = 0.98). The exposure associated with maximal Mtb kill was an AUC0–24/MIC of 23.37 ± 1.16. We identified a 414-gene transcript on exposure to toxic linezolid doses. The largest number of genes mapped to ribosomal proteins, a signature hitherto not associated with linezolid toxicity. The second-largest number of differentially expressed genes mapped to mitochondrial enzyme inhibition. Linezolid AUC0–24 best explained the mitochondrial gene inhibition, with 50% inhibition at 94 mg × hour/L (highest r2 = 0.98). Conclusions. We identified the linezolid AUC0–24/MIC target for optimal efficacy against pediatric intracellular tuberculosis, and an AUC0–24 threshold associated with mitochondrial inhibition. These constitute a therapeutic window to be targeted for optimal linezolid doses in children with tuberculosis.

Collaboration


Dive into the Devyani Deshpande's collaboration.

Top Co-Authors

Avatar

Tawanda Gumbo

Baylor University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shashikant Srivastava

Baylor University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jotam G. Pasipanodya

Baylor University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Soumya Swaminathan

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pooi S. Lee

Baylor University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kayle N. Cirrincione

Baylor University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Beatriz E. Ferro

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Dick van Soolingen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Jakko van Ingen

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge