Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dharanesh Gangaiah is active.

Publication


Featured researches published by Dharanesh Gangaiah.


Journal of Bacteriology | 2013

Activation of CpxRA in Haemophilus ducreyi Primarily Inhibits the Expression of Its Targets, Including Major Virulence Determinants

Dharanesh Gangaiah; Xinjun Zhang; Kate R. Fortney; Beth Baker; Yunlong Liu; Robert S. Munson; Stanley M. Spinola

Haemophilus ducreyi causes chancroid, a genital ulcer disease that facilitates the transmission of human immunodeficiency virus type 1. In humans, H. ducreyi is surrounded by phagocytes and must adapt to a hostile environment to survive. To sense and respond to environmental cues, bacteria frequently use two-component signal transduction (2CST) systems. The only obvious 2CST system in H. ducreyi is CpxRA; CpxR is a response regulator, and CpxA is a sensor kinase. Previous studies by Hansen and coworkers showed that CpxR directly represses the expression of dsrA, the lspB-lspA2 operon, and the flp operon, which are required for virulence in humans. They further showed that CpxA functions predominantly as a phosphatase in vitro to maintain the expression of virulence determinants. Since a cpxA mutant is avirulent while a cpxR mutant is fully virulent in humans, CpxA also likely functions predominantly as a phosphatase in vivo. To better understand the role of H. ducreyi CpxRA in controlling virulence determinants, here we defined genes potentially regulated by CpxRA by using RNA-Seq. Activation of CpxR by deletion of cpxA repressed nearly 70% of its targets, including seven established virulence determinants. Inactivation of CpxR by deletion of cpxR differentially regulated few genes and increased the expression of one virulence determinant. We identified a CpxR binding motif that was enriched in downregulated but not upregulated targets. These data reinforce the hypothesis that CpxA phosphatase activity plays a critical role in controlling H. ducreyi virulence in vivo. Characterization of the downregulated genes may offer new insights into pathogenesis.


PLOS Neglected Tropical Diseases | 2015

Haemophilus ducreyi Cutaneous Ulcer Strains Are Nearly Identical to Class I Genital Ulcer Strains

Dharanesh Gangaiah; Kristen M. Webb; Tricia L. Humphreys; Kate R. Fortney; Evelyn Toh; Albert K. Tai; Samantha S. Katz; Allan Pillay; Cheng Yen Chen; Sally A. Roberts; Robert S. Munson; Stanley M. Spinola

Background Although cutaneous ulcers (CU) in the tropics is frequently attributed to Treponema pallidum subspecies pertenue, the causative agent of yaws, Haemophilus ducreyi has emerged as a major cause of CU in yaws-endemic regions of the South Pacific islands and Africa. H. ducreyi is generally susceptible to macrolides, but CU strains persist after mass drug administration of azithromycin for yaws or trachoma. H. ducreyi also causes genital ulcers (GU) and was thought to be exclusively transmitted by microabrasions that occur during sex. In human volunteers, the GU strain 35000HP does not infect intact skin; wounds are required to initiate infection. These data led to several questions: Are CU strains a new variant of H. ducreyi or did they evolve from GU strains? Do CU strains contain additional genes that could allow them to infect intact skin? Are CU strains susceptible to azithromycin? Methodology/Principal Findings To address these questions, we performed whole-genome sequencing and antibiotic susceptibility testing of 5 CU strains obtained from Samoa and Vanuatu and 9 archived class I and class II GU strains. Except for single nucleotide polymorphisms, the CU strains were genetically almost identical to the class I strain 35000HP and had no additional genetic content. Phylogenetic analysis showed that class I and class II strains formed two separate clusters and CU strains evolved from class I strains. Class I strains diverged from class II strains ~1.95 million years ago (mya) and CU strains diverged from the class I strain 35000HP ~0.18 mya. CU and GU strains evolved under similar selection pressures. Like 35000HP, the CU strains were highly susceptible to antibiotics, including azithromycin. Conclusions/Significance These data suggest that CU strains are derivatives of class I strains that were not recognized until recently. These findings require confirmation by analysis of CU strains from other regions.


Mbio | 2014

Haemophilus ducreyi Hfq Contributes to Virulence Gene Regulation as Cells Enter Stationary Phase

Dharanesh Gangaiah; Maria Labandeira-Rey; Xinjun Zhang; Kate R. Fortney; Sheila Ellinger; Beth Zwickl; Beth Baker; Yunlong Liu; Diane M. Janowicz; Barry P. Katz; Chad A. Brautigam; Robert S. Munson; Eric J. Hansen; Stanley M. Spinola

ABSTRACT To adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes of Haemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog of hfq. Insertional inactivation of hfq altered the expression of ~16% of the H. ducreyi genes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in the hfq inactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation of hfq downregulated genes in the flp-tad and lspB-lspA2 operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarked hfq deletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion of hfq downregulated Flp1 and impaired the ability of H. ducreyi to form microcolonies, downregulated DsrA and rendered H. ducreyi serum susceptible, and downregulated LspB and LspA2, which allow H. ducreyi to resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor of H. ducreyi stationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog. IMPORTANCE Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, including Haemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required for H. ducreyi to infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans. Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, including Haemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required for H. ducreyi to infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans.


Infection and Immunity | 2013

Carbon Storage Regulator A Contributes to the Virulence of Haemophilus ducreyi in Humans by Multiple Mechanisms

Dharanesh Gangaiah; Wei Li; Kate R. Fortney; Diane M. Janowicz; Sheila Ellinger; Beth Zwickl; Barry P. Katz; Stanley M. Spinola

ABSTRACT The carbon storage regulator A (CsrA) controls a wide variety of bacterial processes, including metabolism, adherence, stress responses, and virulence. Haemophilus ducreyi, the causative agent of chancroid, harbors a homolog of csrA. Here, we generated an unmarked, in-frame deletion mutant of csrA to assess its contribution to H. ducreyi pathogenesis. In human inoculation experiments, the csrA mutant was partially attenuated for pustule formation compared to its parent. Deletion of csrA resulted in decreased adherence of H. ducreyi to human foreskin fibroblasts (HFF); Flp1 and Flp2, the determinants of H. ducreyi adherence to HFF cells, were downregulated in the csrA mutant. Compared to its parent, the csrA mutant had a significantly reduced ability to tolerate oxidative stress and heat shock. The enhanced sensitivity of the mutant to oxidative stress was more pronounced in bacteria grown to stationary phase compared to that in bacteria grown to mid-log phase. The csrA mutant also had a significant survival defect within human macrophages when the bacteria were grown to stationary phase but not to mid-log phase. Complementation in trans partially or fully restored the mutant phenotypes. These data suggest that CsrA contributes to virulence by multiple mechanisms and that these contributions may be more profound in bacterial cell populations that are not rapidly dividing in the human host.


Emerging Infectious Diseases | 2017

Neisseria meningitidis ST11 complex isolates associated with nongonococcal urethritis, Indiana, USA, 2015–2016

Evelyn Toh; Dharanesh Gangaiah; Byron E. Batteiger; James A. Williams; Janet N. Arno; Albert K. Tai; Teresa A. Batteiger; David E. Nelson

At a clinic in Indianapolis, Indiana, USA, we observed an increase in Neisseria gonorrhoeae–negative men with suspected gonococcal urethritis who had urethral cultures positive for N. meningitidis. We describe genomes of 2 of these N. meningitidis sequence type 11 complex urethritis isolates. Clinical evidence suggests these isolates may represent an emerging urethrotropic clade.


Journal of Bacteriology | 2014

Haemophilus ducreyi RpoE and CpxRA appear to play distinct yet complementary roles in regulation of envelope-related functions.

Dharanesh Gangaiah; Xinjun Zhang; Beth Baker; Kate R. Fortney; Yunlong Liu; Robert S. Munson; Stanley M. Spinola

Haemophilus ducreyi causes the sexually transmitted disease chancroid and a chronic limb ulceration syndrome in children. In humans, H. ducreyi is found in an abscess and overcomes a hostile environment to establish infection. To sense and respond to membrane stress, bacteria utilize two-component systems (TCSs) and extracytoplasmic function (ECF) sigma factors. We previously showed that activation of CpxRA, the only intact TCS in H. ducreyi, does not regulate homologues of envelope protein folding factors but does downregulate genes encoding envelope-localized proteins, including many virulence determinants. H. ducreyi also harbors a homologue of RpoE, which is the only ECF sigma factor in the organism. To potentially understand how H. ducreyi responds to membrane stress, here we defined RpoE-dependent genes using transcriptome sequencing (RNA-Seq). We identified 180 RpoE-dependent genes, of which 98% were upregulated; a major set of these genes encodes homologues of envelope maintenance and repair factors. We also identified and validated a putative RpoE promoter consensus sequence, which was enriched in the majority of RpoE-dependent targets. Comparison of RpoE-dependent genes to those controlled by CpxR showed that each transcription factor regulated a distinct set of genes. Given that RpoE activated a large number of genes encoding envelope maintenance and repair factors and that CpxRA represses genes encoding envelope-localized proteins, these data suggest that RpoE and CpxRA appear to play distinct yet complementary roles in regulating envelope homeostasis in H. ducreyi.


Genome Announcements | 2016

Draft Whole-Genome Sequence of Haemophilus ducreyi Strain AUSPNG1, Isolated from a Cutaneous Ulcer of a Child from Papua New Guinea.

Dharanesh Gangaiah; Georgi K. Marinov; Sally Roberts; Jenny Robson; Stanley M. Spinola

ABSTRACT Haemophilus ducreyi has recently emerged as a leading cause of cutaneous ulcers in the yaws-endemic areas of Papua New Guinea and other South Pacific islands. Here, we report the draft genome sequence of the H. ducreyi strain AUSPNG1, isolated from a cutaneous ulcer of a child from Papua New Guinea.


Infection and Immunity | 2014

A (p)ppGpp-Null Mutant of Haemophilus ducreyi Is Partially Attenuated in Humans Due to Multiple Conflicting Phenotypes

Concerta L. Holley; Dharanesh Gangaiah; Wei Li; Kate R. Fortney; Diane M. Janowicz; Sheila Ellinger; Beth Zwickl; Barry P. Katz; Stanley M. Spinola

ABSTRACT (p)ppGpp responds to nutrient limitation through a global change in gene regulation patterns to increase survival. The stringent response has been implicated in the virulence of several pathogenic bacterial species. Haemophilus ducreyi, the causative agent of chancroid, has homologs of both relA and spoT, which primarily synthesize and hydrolyze (p)ppGpp in Escherichia coli. We constructed relA and relA spoT deletion mutants to assess the contribution of (p)ppGpp to H. ducreyi pathogenesis. Both the relA single mutant and the relA spoT double mutant failed to synthesize (p)ppGpp, suggesting that relA is the primary synthetase of (p)ppGpp in H. ducreyi. Compared to the parent strain, the double mutant was partially attenuated for pustule formation in human volunteers. The double mutant had several phenotypes that favored attenuation, including increased sensitivity to oxidative stress. The increased sensitivity to oxidative stress could be complemented in trans. However, the double mutant also exhibited phenotypes that favored virulence. When grown to the mid-log phase, the double mutant was significantly more resistant than its parent to being taken up by human macrophages and exhibited increased transcription of lspB, which is involved in resistance to phagocytosis. Additionally, compared to the parent, the double mutant also exhibited prolonged survival in the stationary phase. In E. coli, overexpression of DksA compensates for the loss of (p)ppGpp; the H. ducreyi double mutant expressed higher transcript levels of dksA than the parent strain. These data suggest that the partial attenuation of the double mutant is likely the net result of multiple conflicting phenotypes.


Infection and Immunity | 2016

Haemophilus ducreyi Seeks Alternative Carbon Sources and Adapts to Nutrient Stress and Anaerobiosis During Experimental Infection of Human Volunteers

Dharanesh Gangaiah; Xinjun Zhang; Beth Baker; Kate R. Fortney; Hongyu Gao; Concerta L. Holley; Robert S. Munson; Yunlong Liu; Stanley M. Spinola

ABSTRACT Haemophilus ducreyi causes the sexually transmitted disease chancroid in adults and cutaneous ulcers in children. In humans, H. ducreyi resides in an abscess and must adapt to a variety of stresses. Previous studies (D. Gangaiah, M. Labandeira-Rey, X. Zhang, K. R. Fortney, S. Ellinger, B. Zwickl, B. Baker, Y. Liu, D. M. Janowicz, B. P. Katz, C. A. Brautigam, R. S. Munson, Jr., E. J. Hansen, and S. M. Spinola, mBio 5:e01081-13, 2014, http://dx.doi.org/10.1128/mBio.01081-13) suggested that H. ducreyi encounters growth conditions in human lesions resembling those found in stationary phase. However, how H. ducreyi transcriptionally responds to stress during human infection is unknown. Here, we determined the H. ducreyi transcriptome in biopsy specimens of human lesions and compared it to the transcriptomes of bacteria grown to mid-log, transition, and stationary phases. Multidimensional scaling showed that the in vivo transcriptome is distinct from those of in vitro growth. Compared to the inoculum (mid-log-phase bacteria), H. ducreyi harvested from pustules differentially expressed ∼93 genes, of which 62 were upregulated. The upregulated genes encode homologs of proteins involved in nutrient transport, alternative carbon pathways (l-ascorbate utilization and metabolism), growth arrest response, heat shock response, DNA recombination, and anaerobiosis. H. ducreyi upregulated few genes (hgbA, flp-tad, and lspB-lspA2) encoding virulence determinants required for human infection. Most genes regulated by CpxRA, RpoE, Hfq, (p)ppGpp, and DksA, which control the expression of virulence determinants and adaptation to a variety of stresses, were not differentially expressed in vivo, suggesting that these systems are cycling on and off during infection. Taken together, these data suggest that the in vivo transcriptome is distinct from those of in vitro growth and that adaptation to nutrient stress and anaerobiosis is crucial for H. ducreyi survival in humans.


Infection and Immunity | 2018

Evaluation of CpxRA as a Therapeutic Target for Uropathogenic Escherichia coli Infections

Lana Dbeibo; Julia J. van Rensburg; Sara N. Smith; Kate R. Fortney; Dharanesh Gangaiah; Hongyu Gao; Juan Marzoa; Yunlong Liu; Harry L. T. Mobley; Stanley M. Spinola

ABSTRACT CpxRA is an envelope stress response system found in all members of the family Enterobacteriaceae; CpxA has kinase activity for CpxR and phosphatase activity for phospho-CpxR, a transcription factor. CpxR also accepts phosphate groups from acetyl phosphate, a glucose metabolite. Activation of CpxR increases the transcription of genes encoding membrane repair and downregulates virulence determinants. We hypothesized that activation of CpxR could serve as an antimicrobial/antivirulence strategy and discovered compounds that activate CpxR in Escherichia coli by inhibiting CpxA phosphatase activity. As a prelude to testing such compounds in vivo, here we constructed cpxA (in the presence of glucose, CpxR is activated because of a lack of CpxA phosphatase) and cpxR (system absent) deletion mutants of uropathogenic E. coli (UPEC) CFT073. By RNA sequencing, few transcriptional differences were noted between the cpxR mutant and its parent, but in the cpxA mutant, several UPEC virulence determinants were downregulated, including the fim and pap operons, and it exhibited reduced mannose-sensitive hemagglutination of guinea pig red blood cells in vitro. In competition experiments with mice, both mutants were less fit than the parent in the urine, bladder, and kidney; these fitness defects were complemented in trans. Unexpectedly, in single-strain challenges, only the cpxA mutant was attenuated for virulence in the kidney but not in the bladder or urine. For the cpxA mutant, this may be due to the preferential use of amino acids over glucose as a carbon source in the bladder and urine by UPEC. These studies suggest that CpxA phosphatase inhibitors may have some utility for treating complex urinary tract infections.

Collaboration


Dive into the Dharanesh Gangaiah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert S. Munson

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Xinjun Zhang

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Beth Baker

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge