Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xinjun Zhang is active.

Publication


Featured researches published by Xinjun Zhang.


Nucleic Acids Research | 2009

miR2Disease: A manually curated database for microRNA deregulation in human disease

Qinghua Jiang; Yadong Wang; Yangyang Hao; Liran Juan; Mingxiang Teng; Xinjun Zhang; Meimei Li; Guohua Wang; Yunlong Liu

‘miR2Disease’, a manually curated database, aims at providing a comprehensive resource of microRNA deregulation in various human diseases. The current version of miR2Disease documents 1939 curated relationships between 299 human microRNAs and 94 human diseases by reviewing more than 600 published papers. Around one-seventh of the microRNA–disease relationships represent the pathogenic roles of deregulated microRNA in human disease. Each entry in the miR2Disease contains detailed information on a microRNA–disease relationship, including a microRNA ID, the disease name, a brief description of the microRNA–disease relationship, an expression pattern of the microRNA, the detection method for microRNA expression, experimentally verified target gene(s) of the microRNA and a literature reference. miR2Disease provides a user-friendly interface for a convenient retrieval of each entry by microRNA ID, disease name, or target gene. In addition, miR2Disease offers a submission page that allows researchers to submit established microRNA–disease relationships that are not documented. Once approved by the submission review committee, the submitted records will be included in the database. miR2Disease is freely available at http://www.miR2Disease.org.


Modern Pathology | 2014

Novel specific microRNA biomarkers in idiopathic inflammatory bowel disease unrelated to disease activity.

Jingmei Lin; Noah C. Welker; Zijin Zhao; Yong Li; Jianjun Zhang; Sarah Reuss; Xinjun Zhang; Hwajeong Lee; Yunlong Liu; Mary P. Bronner

The diagnosis of idiopathic inflammatory bowel disease can be challenging. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate protein synthesis through post-transcriptional suppression. This study is to identify new miRNA markers in inflammatory bowel disease, and to examine whether miRNA biomarkers might assist in the diagnosis of inflammatory bowel disease. Illumina small RNA sequencing was performed on non-dysplastic fresh-frozen colonic mucosa samples of the distalmost colectomy tissue from 19 patients with inflammatory bowel disease (10 ulcerative colitis and 9 Crohn disease) and 18 patients with diverticular disease serving as controls. To determine differentially expressed miRNAs, the USeq software package identified 44 miRNAs with altered expression (fold change ≥2 and false discovery rate ≤0.10) compared with the controls. Among them, a panel of nine miRNAs was aberrantly expressed in both ulcerative colitis and Crohn disease. Validation assays performed using quantitative reverse transcription PCR (qRT-PCR) on additional frozen tissue from ulcerative colitis, Crohn disease, and control groups confirmed specific differential expression in inflammatory bowel disease for miR-31, miR-206, miR-424, and miR-146a (P<0.05). The expression of these four miRNAs was further evaluated on formalin-fixed, paraffin-embedded tissue of the distalmost colectomy mucosa from cohorts of diverticular disease controls (n=29), ulcerative colitis (n=36), Crohn disease (n=26), and the other diseases mimicking inflammatory bowel disease including infectious colitis (n=12) and chronic ischemic colitis (n=19), again confirming increased expression specific to inflammatory bowel disease (P<0.05). In summary, we demonstrate that miR-31, miR-206, miR-424, and miR-146a are novel specific biomarkers of inflammatory bowel disease. Furthermore, miR-31 is universally expressed in both ulcerative colitis and Crohn disease not only in fresh-frozen but also in formalin-fixed, paraffin-embedded tissues.


Genome Biology | 2013

DDIG-in: discriminating between disease- associated and neutral non-frameshifting micro-indels

Huiying Zhao; Yuedong Yang; Hai Lin; Xinjun Zhang; Matthew Mort; David Neil Cooper; Yunlong Liu; Yaoqi Zhou

Micro-indels (insertions or deletions shorter than 21 bps) constitute the second most frequent class of human gene mutation after single nucleotide variants. Despite the relative abundance of non-frameshifting indels, their damaging effect on protein structure and function has gone largely unstudied. We have developed a support vector machine-based method named DDIG-in (Detecting disease-causing genetic variations due to indels) to prioritize non-frameshifting indels by comparing disease-associated mutations with putatively neutral mutations from the 1,000 Genomes Project. The final model gives good discrimination for indels and is robust against annotation errors. A webserver implementing DDIG-in is available at http://sparks-lab.org/ddig.


Journal of Bacteriology | 2013

Activation of CpxRA in Haemophilus ducreyi Primarily Inhibits the Expression of Its Targets, Including Major Virulence Determinants

Dharanesh Gangaiah; Xinjun Zhang; Kate R. Fortney; Beth Baker; Yunlong Liu; Robert S. Munson; Stanley M. Spinola

Haemophilus ducreyi causes chancroid, a genital ulcer disease that facilitates the transmission of human immunodeficiency virus type 1. In humans, H. ducreyi is surrounded by phagocytes and must adapt to a hostile environment to survive. To sense and respond to environmental cues, bacteria frequently use two-component signal transduction (2CST) systems. The only obvious 2CST system in H. ducreyi is CpxRA; CpxR is a response regulator, and CpxA is a sensor kinase. Previous studies by Hansen and coworkers showed that CpxR directly represses the expression of dsrA, the lspB-lspA2 operon, and the flp operon, which are required for virulence in humans. They further showed that CpxA functions predominantly as a phosphatase in vitro to maintain the expression of virulence determinants. Since a cpxA mutant is avirulent while a cpxR mutant is fully virulent in humans, CpxA also likely functions predominantly as a phosphatase in vivo. To better understand the role of H. ducreyi CpxRA in controlling virulence determinants, here we defined genes potentially regulated by CpxRA by using RNA-Seq. Activation of CpxR by deletion of cpxA repressed nearly 70% of its targets, including seven established virulence determinants. Inactivation of CpxR by deletion of cpxR differentially regulated few genes and increased the expression of one virulence determinant. We identified a CpxR binding motif that was enriched in downregulated but not upregulated targets. These data reinforce the hypothesis that CpxA phosphatase activity plays a critical role in controlling H. ducreyi virulence in vivo. Characterization of the downregulated genes may offer new insights into pathogenesis.


Mbio | 2014

Haemophilus ducreyi Hfq Contributes to Virulence Gene Regulation as Cells Enter Stationary Phase

Dharanesh Gangaiah; Maria Labandeira-Rey; Xinjun Zhang; Kate R. Fortney; Sheila Ellinger; Beth Zwickl; Beth Baker; Yunlong Liu; Diane M. Janowicz; Barry P. Katz; Chad A. Brautigam; Robert S. Munson; Eric J. Hansen; Stanley M. Spinola

ABSTRACT To adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes of Haemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog of hfq. Insertional inactivation of hfq altered the expression of ~16% of the H. ducreyi genes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in the hfq inactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation of hfq downregulated genes in the flp-tad and lspB-lspA2 operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarked hfq deletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion of hfq downregulated Flp1 and impaired the ability of H. ducreyi to form microcolonies, downregulated DsrA and rendered H. ducreyi serum susceptible, and downregulated LspB and LspA2, which allow H. ducreyi to resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor of H. ducreyi stationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog. IMPORTANCE Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, including Haemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required for H. ducreyi to infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans. Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, including Haemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required for H. ducreyi to infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans.


Human Mutation | 2017

ExonImpact: prioritizing pathogenic alternative splicing events

Meng Li; Weixing Feng; Xinjun Zhang; Yuedong Yang; Kejun Wang; Matthew Mort; David Neil Cooper; Yue Wang; Yaoqi Zhou; Yunlong Liu

Alternative splicing (AS) is a closely regulated process that allows a single gene to encode multiple protein isoforms, thereby contributing to the diversity of the proteome. Dysregulation of the splicing process has been found to be associated with many inherited diseases. However, among the pathogenic AS events, there are numerous “passenger” events whose inclusion or exclusion does not lead to significant changes with respect to protein function. In this study, we evaluate the secondary and tertiary structural features of proteins associated with disease‐causing and neutral AS events, and show that several structural features are strongly associated with the pathological impact of exon inclusion. We further develop a machine‐learning‐based computational model, ExonImpact, for prioritizing and evaluating the functional consequences of hitherto uncharacterized AS events. We evaluated our model using several strategies including cross‐validation, and data from the Gene‐Tissue Expression (GTEx) and ClinVar databases. ExonImpact is freely available at http://watson.compbio.iupui.edu/ExonImpact.


Journal of Bacteriology | 2014

Haemophilus ducreyi RpoE and CpxRA appear to play distinct yet complementary roles in regulation of envelope-related functions.

Dharanesh Gangaiah; Xinjun Zhang; Beth Baker; Kate R. Fortney; Yunlong Liu; Robert S. Munson; Stanley M. Spinola

Haemophilus ducreyi causes the sexually transmitted disease chancroid and a chronic limb ulceration syndrome in children. In humans, H. ducreyi is found in an abscess and overcomes a hostile environment to establish infection. To sense and respond to membrane stress, bacteria utilize two-component systems (TCSs) and extracytoplasmic function (ECF) sigma factors. We previously showed that activation of CpxRA, the only intact TCS in H. ducreyi, does not regulate homologues of envelope protein folding factors but does downregulate genes encoding envelope-localized proteins, including many virulence determinants. H. ducreyi also harbors a homologue of RpoE, which is the only ECF sigma factor in the organism. To potentially understand how H. ducreyi responds to membrane stress, here we defined RpoE-dependent genes using transcriptome sequencing (RNA-Seq). We identified 180 RpoE-dependent genes, of which 98% were upregulated; a major set of these genes encodes homologues of envelope maintenance and repair factors. We also identified and validated a putative RpoE promoter consensus sequence, which was enriched in the majority of RpoE-dependent targets. Comparison of RpoE-dependent genes to those controlled by CpxR showed that each transcription factor regulated a distinct set of genes. Given that RpoE activated a large number of genes encoding envelope maintenance and repair factors and that CpxRA represses genes encoding envelope-localized proteins, these data suggest that RpoE and CpxRA appear to play distinct yet complementary roles in regulating envelope homeostasis in H. ducreyi.


MicroRNA (Shariqah, United Arab Emirates) | 2017

Novel MicroRNA Signature to Differentiate Ulcerative Colitis from Crohn Disease: A Genome-Wide Study Using Next Generation Sequencing

Jingmei Lin; Xinjun Zhang; Zijin Zhao; Noah C. Welker; Yong Li; Yunlong Liu; Mary P. Bronner

BACKGROUND The diagnosis of ulcerative colitis (UC) or Crohn disease (CD) can be challenging given the overlapping features. Knowledge of microRNAs in IBD has expanded recently and supports that microRNAs play an important role. This study aimed to identify novel microRNA biomarkers through comprehensive genome-wide sequencing to distinguish UC from CD. DESIGN Illumina next generation sequencing was performed on nondysplastic fresh-frozen colonic mucosa of the distal-most colectomy from 19 patients (10 UC and 9 CD) and 18 patients with diverticular disease serving as controls. RESULTS USeq software package identified 44 microRNAs with altered expression (fold change ≥2 and false discovery rate ≤0.10) compared to controls. Among them, a panel of 11 microRNAs was aberrantly expressed between UC and CD. qRT-PCR validation assays performed on frozen tissue from additional samples of UC (n=20) and CD (n=10) confirmed specific differential expression of miR-147b, miR-194-2, miR-383, miR-615 and miR-1826 (P<0.05). In addition, pathway analysis identified target genes of epithelial adhesion junction, integrin, glycolysis and cell cycle that involve in signaling pathways of TGF-β, STAT3, IL-8 and PI3L/AKT/mTOR. CONCLUSION Identification of differentially expressed microRNAs in UC and CD supports the hypothesis that UC and CD are regulated by distinct pathophysiologic mechanisms. MicroRNA panels show promise as diagnostic biomarkers for the subtyping of inflammatory bowel disease.


Infection and Immunity | 2016

Haemophilus ducreyi Seeks Alternative Carbon Sources and Adapts to Nutrient Stress and Anaerobiosis During Experimental Infection of Human Volunteers

Dharanesh Gangaiah; Xinjun Zhang; Beth Baker; Kate R. Fortney; Hongyu Gao; Concerta L. Holley; Robert S. Munson; Yunlong Liu; Stanley M. Spinola

ABSTRACT Haemophilus ducreyi causes the sexually transmitted disease chancroid in adults and cutaneous ulcers in children. In humans, H. ducreyi resides in an abscess and must adapt to a variety of stresses. Previous studies (D. Gangaiah, M. Labandeira-Rey, X. Zhang, K. R. Fortney, S. Ellinger, B. Zwickl, B. Baker, Y. Liu, D. M. Janowicz, B. P. Katz, C. A. Brautigam, R. S. Munson, Jr., E. J. Hansen, and S. M. Spinola, mBio 5:e01081-13, 2014, http://dx.doi.org/10.1128/mBio.01081-13) suggested that H. ducreyi encounters growth conditions in human lesions resembling those found in stationary phase. However, how H. ducreyi transcriptionally responds to stress during human infection is unknown. Here, we determined the H. ducreyi transcriptome in biopsy specimens of human lesions and compared it to the transcriptomes of bacteria grown to mid-log, transition, and stationary phases. Multidimensional scaling showed that the in vivo transcriptome is distinct from those of in vitro growth. Compared to the inoculum (mid-log-phase bacteria), H. ducreyi harvested from pustules differentially expressed ∼93 genes, of which 62 were upregulated. The upregulated genes encode homologs of proteins involved in nutrient transport, alternative carbon pathways (l-ascorbate utilization and metabolism), growth arrest response, heat shock response, DNA recombination, and anaerobiosis. H. ducreyi upregulated few genes (hgbA, flp-tad, and lspB-lspA2) encoding virulence determinants required for human infection. Most genes regulated by CpxRA, RpoE, Hfq, (p)ppGpp, and DksA, which control the expression of virulence determinants and adaptation to a variety of stresses, were not differentially expressed in vivo, suggesting that these systems are cycling on and off during infection. Taken together, these data suggest that the in vivo transcriptome is distinct from those of in vitro growth and that adaptation to nutrient stress and anaerobiosis is crucial for H. ducreyi survival in humans.


Publisher | 2017

regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution

Xinjun Zhang; Meng Li; Hai Lin; Xi Rao; Weixing Feng; Yuedong Yang; Matthew Mort; David Neil Cooper; Yue Wang; Yadong Wang; Clark D. Wells; Yaoqi Zhou; Yunlong Liu

Collaboration


Dive into the Xinjun Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beth Baker

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert S. Munson

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Stanley M. Spinola

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meng Li

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge