Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dhaya Seshasayee is active.

Publication


Featured researches published by Dhaya Seshasayee.


Immunity | 2002

BAFF/BLyS Receptor 3 Binds the B Cell Survival Factor BAFF Ligand through a Discrete Surface Loop and Promotes Processing of NF-κB2

Nobuhiko Kayagaki; Minhong Yan; Dhaya Seshasayee; Hua Wang; Wyne P. Lee; Dorothy French; Iqbal S. Grewal; Andrea G. Cochran; Nathaniel C. Gordon; JianPing Yin; Melissa A. Starovasnik; Vishva M. Dixit

The TNF-like ligand BAFF/BLyS is a potent survival factor for B cells. It binds three receptors: TACI, BCMA, and BR3. We show that BR3 signaling promotes processing of the transcription factor NF-kappaB2/p100 to p52. NF-kappaB2/p100 cleavage was abrogated in B cells from A/WySnJ mice possessing a mutant BR3 gene, but not in TACI or BCMA null B cells. Furthermore, wild-type mice injected with BAFF-neutralizing BR3-Fc protein showed reduced basal NF-kappaB2 activation. BR3-Fc treatment of NZB/WF1 mice, which develop a fatal lupus-like syndrome, inhibited NF-kappaB2 processing and attenuated the disease process. Since inhibiting the BR3-BAFF interaction has therapeutic ramifications, the ligand binding interface of BR3 was investigated and found to reside within a 26 residue core domain. When stabilized within a structured beta-hairpin peptide, six of these residues were sufficient to confer binding to BAFF.


Immunity | 2003

Loss of TACI Causes Fatal Lymphoproliferation and Autoimmunity, Establishing TACI as an Inhibitory BLyS Receptor

Dhaya Seshasayee; Patricia Valdez; Minhong Yan; Vishva M. Dixit; Daniel Tumas; Iqbal S. Grewal

BLys , a key cytokine that sustains B cell maturation and tolerance, binds three receptors: BR3, BCMA, and TACI. Results from knockout mice implicate a major functional role for BR3 and a redundant one for BCMA in B cell function. TACIs role is controversial based on defects in TI antibody responses accompanied by B cell hyperplasia in knockout mice. We have presently characterized a precise role for TACI in vivo. TACI(-/-) mice develop fatal autoimmune glomerulonephritis, proteinurea, and elevated levels of circulating autoantibodies. Treatment of B cells with TACI agonistic antibodies inhibits proliferation in vitro and activation of a chimeric receptor containing the TACI intracellular domain induces apoptosis. These results demonstrate the critical requirement for TACI in regulating B cell homeostasis.


Science | 2012

Loss of the Tumor Suppressor BAP1 Causes Myeloid Transformation

Anwesha Dey; Dhaya Seshasayee; Rajkumar Noubade; Dorothy French; Jinfeng Liu; Mira S. Chaurushiya; Donald S. Kirkpatrick; Victoria Pham; Jennie R. Lill; Corey E. Bakalarski; Jiansheng Wu; Lilian Phu; Paula Katavolos; Lindsay M. LaFave; Omar Abdel-Wahab; Zora Modrusan; Somasekar Seshagiri; Ken Dong; Zhonghua Lin; Mercedesz Balazs; Rowena Suriben; Kim Newton; Sarah G. Hymowitz; Guillermo Garcia-Manero; Flavius Martin; Ross L. Levine; Vishva M. Dixit

Identifying BAP1 Targets Inactivating mutations in the deubiquitinating enzyme BAP1 have been associated with cancer. Dey et al. (p. 1541, published online 9 August; see the Perspective by White and Harper) reveal molecular targets of the enzyme and show evidence for a role in leukemia. Mice specifically lacking the target of BAP1, HCF-1, in the bone marrow developed myeloid leukemia. BAP1 appears to be part of a complex that regulates modification of histones and gene expression important for normal hematopoiesis and tumor suppression. The deubiquitinating enzyme BAP1 is implicated in myelodysplastic syndrome. De-ubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with increased risk of mesothelioma and uveal melanoma. Somatic BAP1 mutations occur in various malignancies. We show that mouse Bap1 gene deletion is lethal during embryogenesis, but systemic or hematopoietic-restricted deletion in adults recapitulates features of human myelodysplastic syndrome (MDS). Knockin mice expressing BAP1 with a 3xFlag tag revealed that BAP1 interacts with host cell factor–1 (HCF-1), O-linked N-acetylglucosamine transferase (OGT), and the polycomb group proteins ASXL1 and ASXL2 in vivo. OGT and HCF-1 levels were decreased by Bap1 deletion, indicating a critical role for BAP1 in stabilizing these epigenetic regulators. Human ASXL1 is mutated frequently in chronic myelomonocytic leukemia (CMML) so an ASXL/BAP1 complex may suppress CMML. A BAP1 catalytic mutation found in a MDS patient implies that BAP1 loss of function has similar consequences in mice and humans.


PLOS ONE | 2009

Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus

Alexander R. Abbas; Kristen Wolslegel; Dhaya Seshasayee; Zora Modrusan; Hilary Clark

Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease with a complex spectrum of cellular and molecular characteristics including several dramatic changes in the populations of peripheral leukocytes. These changes include general leukopenia, activation of B and T cells, and maturation of granulocytes. The manifestation of SLE in peripheral blood is central to the disease but is incompletely understood. A technique for rigorously characterizing changes in mixed populations of cells, microarray expression deconvolution, has been applied to several areas of biology but not to SLE or to blood. Here we demonstrate that microarray expression deconvolution accurately quantifies the constituents of real blood samples and mixtures of immune-derived cell lines. We characterize a broad spectrum of peripheral leukocyte cell types and states in SLE to uncover novel patterns including: specific activation of NK and T helper lymphocytes, relationships of these patterns to each other, and correlations to clinical variables and measures. The expansion and activation of monocytes, NK cells, and T helper cells in SLE at least partly underlie this diseases prominent interferon signature. These and other patterns of leukocyte dynamics uncovered here correlate with disease severity and treatment, suggest potential new treatments, and extend our understanding of lupus pathology as a complex autoimmune disease involving many arms of the immune system.


Molecular and Cellular Biology | 2004

APRIL-deficient mice have normal immune system development

Eugene Varfolomeev; Frank Kischkel; Flavius Martin; Dhaya Seshasayee; Hua Wang; David A. Lawrence; Christine Olsson; Lucrece Tom; Sharon Erickson; Dorothy French; Peter Schow; Iqbal S. Grewal; Avi Ashkenazi

ABSTRACT APRIL (a proliferation-inducing ligand) is a member of the tumor necrosis factor (TNF) superfamily. APRIL mRNA shows high levels of expression in tumors of different origin and a low level of expression in normal cells. APRIL shares two TNF receptor family members, TACI and BCMA, with another TNF homolog, BLyS/BAFF. BLyS is involved in regulation of B-cell activation and survival and also binds to a third receptor, BR3/BAFF-R, which is not shared with APRIL. Recombinant APRIL and BLyS induce accumulation of B cells in mice, while BLyS deficiency results in severe B-cell dysfunction. To investigate the physiological role of APRIL, we generated mice that are deficient in its encoding gene. APRIL−/− mice were viable and fertile and lacked any gross abnormality. Detailed histological analysis did not reveal any defects in major tissues and organs, including the primary and secondary immune organs. T- and B-cell development and in vitro function were normal as well, as were T-cell-dependent and -independent in vivo humoral responses to antigenic challenge. These data indicate that APRIL is dispensable in the mouse for proper development. Thus, BLyS may be capable of fulfilling APRILs main functions.


Journal of Clinical Investigation | 2007

In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation

Dhaya Seshasayee; Wyne P. Lee; Meijuan Zhou; Jean Shu; Eric Suto; Juan Zhang; Laurie Diehl; Cary D. Austin; Y. Gloria Meng; Martha Tan; Sherron Bullens; Stefan Seeber; Maria E. Fuentes; Aran Frank Labrijn; Yvo Graus; Lisa A. Miller; Edward S. Schelegle; Dallas M. Hyde; Lawren C. Wu; Sarah G. Hymowitz; Flavius Martin

Thymic stromal lymphopoietin (TSLP) potently induces deregulation of Th2 responses, a hallmark feature of allergic inflammatory diseases such as asthma, atopic dermatitis, and allergic rhinitis. However, direct downstream in vivo mediators in the TSLP-induced atopic immune cascade have not been identified. In our current study, we have shown that OX40 ligand (OX40L) is a critical in vivo mediator of TSLP-mediated Th2 responses. Treating mice with OX40L-blocking antibodies substantially inhibited immune responses induced by TSLP in the lung and skin, including Th2 inflammatory cell infiltration, cytokine secretion, and IgE production. OX40L-blocking antibodies also inhibited antigen-driven Th2 inflammation in mouse and nonhuman primate models of asthma. This treatment resulted in both blockade of the OX40-OX40L receptor-ligand interaction and depletion of OX40L-positive cells. The use of a blocking, OX40L-specific mAb thus presents a promising strategy for the treatment of allergic diseases associated with pathologic Th2 immune responses.


Nature | 2016

Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation

Ingrid E. Wertz; Kim Newton; Dhaya Seshasayee; Saritha Kusam; Cynthia Lam; Juan Zhang; Nataliya Popovych; Elizabeth Helgason; Allyn J. Schoeffler; Surinder Jeet; Nandhini Ramamoorthi; Lorna Kategaya; Robert J. Newman; Keisuke Horikawa; Debra L. Dugger; Wendy Sandoval; Susmith Mukund; Anuradha Zindal; Flavius Martin; Clifford Quan; Jeffrey Tom; Wayne J. Fairbrother; Michael J. Townsend; Søren Warming; Jason DeVoss; Jinfeng Liu; Erin C. Dueber; Patrick Caplazi; Wyne P. Lee; Christopher C. Goodnow

Inactivation of the TNFAIP3 gene, encoding the A20 protein, is associated with critical inflammatory diseases including multiple sclerosis, rheumatoid arthritis and Crohn’s disease. However, the role of A20 in attenuating inflammatory signalling is unclear owing to paradoxical in vitro and in vivo findings. Here we utilize genetically engineered mice bearing mutations in the A20 ovarian tumour (OTU)-type deubiquitinase domain or in the zinc finger-4 (ZnF4) ubiquitin-binding motif to investigate these discrepancies. We find that phosphorylation of A20 promotes cleavage of Lys63-linked polyubiquitin chains by the OTU domain and enhances ZnF4-mediated substrate ubiquitination. Additionally, levels of linear ubiquitination dictate whether A20-deficient cells die in response to tumour necrosis factor. Mechanistically, linear ubiquitin chains preserve the architecture of the TNFR1 signalling complex by blocking A20-mediated disassembly of Lys63-linked polyubiquitin scaffolds. Collectively, our studies reveal molecular mechanisms whereby A20 deubiquitinase activity and ubiquitin binding, linear ubiquitination, and cellular kinases cooperate to regulate inflammation and cell death.


Science | 2012

Equilibrative Nucleoside Transporter 3 Deficiency Perturbs Lysosome Function and Macrophage Homeostasis

Chia-Lin Hsu; Wei Yu Lin; Dhaya Seshasayee; Yung-Hsiang Chen; Xiao Ding; Zhonghua Lin; Eric Suto; Zhiyu Huang; Wyne P. Lee; Hyunjoo Park; Min Xu; Mei Sun; Linda Rangell; Jeff Lutman; Sheila Ulufatu; Eric Stefanich; Cecile Chalouni; Meredith Sagolla; Lauri Diehl; Paul J. Fielder; Brian Dean; Mercedesz Balazs; Flavius Martin

From Nucleoside Recycling to Histiocytosis Macrophages remove billions of apoptotic cells daily, releasing their nucleic acid material through lysosomal degradation, which allows the resulting nucleosides to be recycled. Hsu et al. (p. 89, published online 15 December) found that the nucleoside transporter, equilibrative nucleoside transporter 3 (ENT3), was highly expressed in macrophages and showed that mice deficient in this transporter develop histiocytosis and features of lysosomal storage disease. When exposed to apoptotic cells, macrophages carrying human ENT3 mutations accumulated adenosine and increased their lysosomal pH. These changes contributed to an enhanced signaling through macrophage colony-stimulating factor (M-CSF) receptor and, ultimately, to M-CSF–driven myeloproliferative disease. Lack of the transporter critical for recycling of nucleosides after phagocytosis results in a fatal expansion of macrophages. Lysosomal storage diseases (LSDs) are a group of heterogeneous disorders caused by defects in lysosomal enzymes or transporters, resulting in accumulation of undegraded macromolecules or metabolites. Macrophage numbers are expanded in several LSDs, leading to histiocytosis of unknown pathophysiology. Here, we found that mice lacking the equilibrative nucleoside transporter 3 (ENT3) developed a spontaneous and progressive macrophage-dominated histiocytosis. In the absence of ENT3, defective apoptotic cell clearance led to lysosomal nucleoside buildup, elevated intralysosomal pH, and altered macrophage function. The macrophage accumulation was partly due to increased macrophage colony-stimulating factor and receptor expression and signaling secondary to the lysosomal defects. These studies suggest a cellular and molecular basis for the development of histiocytosis in several human syndromes associated with ENT3 mutations and potentially other LSDs.


Molecular and Cellular Biology | 1998

GATA-1 Dominantly Activates a Program of Erythroid Gene Expression in Factor-Dependent Myeloid FDCW2 Cells

Dhaya Seshasayee; Peter Gaines; Don M. Wojchowski

ABSTRACT Erythrocyte development has previously been shown to depend upon the expression of the lineage-restricted trans-acting factor GATA-1. Despite predicted roles for this factor during early development, GATA-1-deficient cells in chimeric mice and embryonic stem cell cultures mature to a late proerythroblast stage and express at least certain genes that normally are thought to be regulated by GATA-1 (including erythroid Krüppel-like factor [EKLF] and the erythropoietin [Epo] receptor). Opportunities to test roles for GATA-1 in erythroid gene activation in these systems therefore are limited. In the present study, in an alternate approach to test the function of GATA-1, GATA-1 has been expressed together with the Epo receptor in myeloid FDCW2 cells and the resulting effects on cytokine-dependent proliferation and erythroid gene expression have been assessed. GATA-1 expression at low levels delayed FDCW2ER cell cycle progression at the G1 phase specifically during Epo-induced mitogenesis. Upon expression of GATA-1 at increased levels, proliferation in response to Epo, interleukin-3 (IL-3), and stem cell factor was attenuated and endogenous GATA-1, EKLF and βmaj-globin gene expression was activated. Friend of GATA-1 (FOG) transcript levels also were enhanced, andets-1 and c-mpl but not Epo receptor gene expression was induced. Finally, in FDCW2 cells expressing increased levels of GATA-1 and a carboxyl-terminally truncated Epo receptor, Epo (with respect to IL-3 as a control) was shown to markedly promote globin transcript expression. Thus, novel evidence for select hierarchical roles for GATA-1 and Epo in erythroid lineage specification is provided.


Journal of Biological Chemistry | 2000

GATA-1- and FOG-dependent Activation of Megakaryocytic αIIB Gene Expression

Peter Gaines; Justin N. Geiger; Geoff Knudsen; Dhaya Seshasayee; Don M. Wojchowski

FOG is a multitype zinc finger protein that is essential for megakaryopoiesis, binds to the amino-terminal finger of GATA-1, and modulates the transcription of GATA-1 target genes. Presently investigated are effects of FOG and GATA-1 on the transcription of the megakaryocytic integrin gene,αIIb. In GATA-1-deficient FDCER cells (in the presence of endogenous FOG), ectopically expressed GATA-1 activated transcription 3–10-fold both from αIIbtemplates and the endogenous αIIb gene. The increased expression of FOG increased reporter construct transcription 30-fold overall. Unexpectedly, αIIb gene transcription also was stimulated efficiently upon the ectopic expression in of FOG per se. This occurred in the absence of any detectable expression of GATA-1 and was observed in multiple independent sublines for both the endogenousαIIb gene and transfected constructs yet proved to depend largely upon conserved GATA elements 457 and 55 base pairs upstream from the transcriptional start site. In 293 cells, FOG plus GATA-1 but not FOG alone only moderately stimulatedαIIb transcription, and no direct interactions of FOG with the αIIb promoter were detectable. Thus, FOG acts in concert with GATA-1 to stimulateαIIb expression but also can act via a GATA-1-independent route, which is proposed to involve additional hematopoietic-restricted cofactors (possibly GATA-2).

Collaboration


Dive into the Dhaya Seshasayee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge